754
Views
16
CrossRef citations to date
0
Altmetric
Original Articles

Modelling and prediction of tool wear using LS-SVM in milling operation

&
Pages 76-91 | Received 11 Aug 2013, Accepted 26 Nov 2014, Published online: 19 Jan 2015

References

  • Bhattacharyya, P., D. Sengupta, and S. Mukhopadhyay. 2007. “Cutting Force-Based Real-Time Estimation of Tool Wear in Face Milling Using a Combination of Signal Processing Techniques.” Mechanical Systems and Signal Processing 21 (6): 2665–2683. doi:10.1016/j.ymssp.2007.01.004.
  • Brezak, D., D. Majetic, T. Udiljak, and J. Kasac. 2012. “Tool Wear Estimation Using an Analytic Fuzzy Classifier and Support Vector Machines.” Journal of Intelligent Manufacturing 23 (3): 797–809. doi:10.1007/s10845-010-0436-x.
  • Castejón, M., E. Alegre, J. Barreiro, and L. K. Hernández. 2007. “On-Line Tool Wear Monitoring Using Geometric Descriptors from Digital Images.” International Journal of Machine Tools and Manufacture 47 (12–13): 1847–1853. doi:10.1016/j.ijmachtools.2007.04.001.
  • Chen, J. C., and J. C. Chen. 2005. “An Artificial-Neural-Networks-Based In-Process Tool Wear Prediction System in Milling Operations.” The International Journal of Advanced Manufacturing Technology 25 (5–6): 427–434. doi:10.1007/s00170-003-1848-y.
  • Chen, X. Q., and H. Z. Li. 2009. “Development of a Tool Wear Observer Model for Online Tool Condition Monitoring and Control in Machining Nickel-Based Alloys.” The International Journal of Advanced Manufacturing Technology 45 (7–8): 786–800. doi:10.1007/s00170-009-2003-1.
  • Chien, W.-T., and C.-S. Tsai. 2003. “The Investigation on the Prediction of Tool Wear and the Determination of Optimum Cutting Conditions in Machining 17-4PH Stainless Steel.” Journal of Materials Processing Technology 140 (1–3): 340–345. doi:10.1016/S0924-0136(03)00753-2.
  • Cho, S., S. Asfour, A. Onar, and N. Kaundinya. 2005. “Tool Breakage Detection Using Support Vector Machine Learning in a Milling Process.” International Journal of Machine Tools and Manufacture 45 (3): 241–249. doi:10.1016/j.ijmachtools.2004.08.016.
  • Ghani, J. A., M. Rizal, M. Z. Nuawi, M. J. Ghazali, and C. H. C. Haron. 2011. “Monitoring Online Cutting Tool Wear Using Low-Cost Technique and User-Friendly GUI.” Wear: An International Journal on the Science and Technology of Friction Lubrication and Wear 271 (9–10): 2619–2624.
  • Jia, W. G., D. Hu, and C. Che. 2010. “Fault Diagnosis of Cutting Tool Based on Wavelet Analysis and Support Vector Machine.” Combination Machine Tools and Automatic Processing Technology 12: 65–70. (in Chinese).
  • Jurkovic, J., M. Korosec, and J. Kopac. 2005. “New Approach in Tool Wear Measuring Technique Using CCD Vision System.” International Journal of Machine Tools and Manufacture 45 (9): 1023–1030. doi:10.1016/j.ijmachtools.2004.11.030.
  • Kerr, D., J. Pengilley, and R. Garwood. 2006. “Assessment and Visualisation of Machine Tool Wear Using Computer Vision.” The International Journal of Advanced Manufacturing Technology 28 (7–8): 781–791. doi:10.1007/s00170-004-2420-0.
  • Kious, M., M. Boudraa, A. Ouahabi, and R. Serra. 2008. “Influence of Machining Cycle of Horizontal Milling on the Quality of Cutting Force Measurement for the Cutting Tool Wear Monitoring.” Production Engineering 2 (4): 443–449. doi:10.1007/s11740-008-0119-z.
  • Koren, Y. 1978. “Flank Wear Model of Cutting Tools Using Control Theory.” Journal of Engineering for Industry, Transaction of ASME 100 (1): 103–109. doi:10.1115/1.3439336.
  • Leone, C., D. D’Addona, and R. Teti. 2011. “Tool Wear Modelling through Regression Analysis and Intelligent Methods for Nickel Base Alloy Machining.” CIRP Journal of Manufacturing Science and Technology 4 (3): 327–331. doi:10.1016/j.cirpj.2011.03.009.
  • Li, B. 2012. “A Review of Tool Wear Estimation Using Theoretical Analysis and Numerical Simulation Technologies.” International Journal of Refractory Metals and Hard Materials 35 (143): 143–151. doi:10.1016/j.ijrmhm.2012.05.006.
  • Mika, S., G. Ratsch, J. Weston, B. Scholkopf, and K. R. Muller, 1999. Fisher Discriminant Analysis with Kernels. IEEE International Workshop on Neural networks for Signal Processing, Madison, WI, August 23–25, 41–48.
  • Özel, T., Y. Karpat, L. Figueira, and J. P. Davim. 2007. “Modelling of Surface Finish and Tool Flank Wear in Turning of AISI D2 Steel with Ceramic Wiper Inserts.” Journal of Materials Processing Technology 189 (1–3): 192–198. doi:10.1016/j.jmatprotec.2007.01.021.
  • Patricia, M. E., D. Nayarit, and C. Zulay. 2012. “Prediction of Tool Wear Mechanisms in Face Milling AISI 1045 Steel.” Journal of Materials Engineering and Performance 21 (6): 797–808.
  • Prakash, U., G. N. Yogavardhanaswamy, S. L. Ajit Prasad, and H. V. Ravindra. (2011) Tool Wear Prediction by Regression Analysis in Turning A356 with 10% Sic. 2011 IEEE Recent Advances in Intelligent Computational Systems (RAICS), Trivandrum, September 22–24, 682–687.
  • Salgado, D. R., F. J. Alonso, I. Cambero, and A. Marcelo. 2009. “In-Process Surface Roughness Prediction System Using Cutting Vibrations in Turning.” The International Journal of Advanced Manufacturing Technology 43 (1–2): 40–51. doi:10.1007/s00170-008-1698-8.
  • Salonitis, K., and A. Kolios, 2013. Reliability Assessment of Cutting Tools Life Based on Advanced Approximation Methods, 14th CIRP Conference on Modeling of Machining Operations (CIRP CMMO), Procedia CIRP 8 397–402.
  • Shi, D. F., and N. N. Gindy. 2007. “Tool Wear Predictive Model Based on Least Squares Support Vector Machines.” Mechanical Systems and Signal Processing 21 (4): 1799–1814. doi:10.1016/j.ymssp.2006.07.016.
  • Wang, G. F., L. Qian, and Z. W. Guo. 2013. “Continuous Tool Wear Prediction Based on Gaussian Mixture Regression Model.” The International Journal of Advanced Manufacturing Technology 66 (9–12): 1921–1929. doi:10.1007/s00170-012-4470-z.
  • Ye, W., S. L. Wang, and S. Lei. 2009. “Predicting Model of Cutting Tool Wear Based on Least Squares Support Vector Machine and MATLAB Simulation.” Tool Technology, 43 (10): 42–45 (in Chinese).
  • Zhang, C., X. H. Liu, J. W. Fang, and L. S. Zhou. 2011. “A New Tool Wear Estimation Method Based on Shape Mapping in the Milling Process.” The International Journal of Advanced Manufacturing Technology 53 (1–4): 121–130. doi:10.1007/s00170-010-2806-0.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.