514
Views
0
CrossRef citations to date
0
Altmetric
Original Articles

A human mimicking control strategy for robotic deburring of hard materials

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 869-880 | Received 13 Jul 2017, Accepted 27 Feb 2018, Published online: 08 Mar 2018

References

  • ABB. 2017. Function Package for Force Control. s.l.:s.n.
  • Abele, E., et al. 2008. Prediction of the Tool Displacement by Coupled Models of the Compliant Industrial Robot and the Milling Process. s.l., s.n. 223–230. Proceedings of the CIRP 2nd International Conference Process Machine Interactions Vancouver,  Canada; 2010.
  • Abele, E., M. Weigold, and S. Rothenbücher. 2007. “Modeling and Identification of an Industrial Robot for Machining Applications.” CIRP Annals - Manufacturing Technology 56 (1): 387–390. doi:10.1016/j.cirp.2007.05.090.
  • ATI. 2017. Robotic Deburring Tools. s.l.:s.n.
  • Berselli, G., et al. 2016. “Engineering Methods and Tools Enabling Reconfigurable and Adaptive Robotic Deburring.” In A Cura Di Advances on Mechanics, Design Engineering and Manufacturing: Proceedings of the International Joint Conference on Mechanics, Design Engineering & Advanced Manufacturing (JCM 2016), edited by B. Eynard, et al., 655–664. Catania, Italy: Springer International Publishing.
  • Bone, G. M., M. A. Elbestawi, R. R. Lingarkar, and L. L. Liu. 1991. “Force Control for Robotic Deburring.” ASME Journal of Dynamic Systems, Measurement, and Control 113 (3): 395–400. doi:10.1115/1.2896423.
  • Cen, L., and S. Melkote. 2017. “Effect of Robot Dynamics on the Machining Forces in Robotic Milling.” Procedia Manufacturing 10: 486–496. doi:10.1016/j.promfg.2017.07.034.
  • Daniali, M. M., and G. Vossoughi. 2009. “Intelligent Active Vibration Control of Constrained Manipularors.” International Conference on Industrial Mechatronics and Automation, Chengdu, China.
  • Duelen, G., H. Munch, D. Surdilovic, and J. Timm. 1992. Automated Force Control Schemes for Robotic Deburring: Development and Experimental Evaluation. Proceedings of the 1992 International Conference on Industrial Electronics, Control, Instrumentation, and Automation, vol. 2, San Diego, CA, 1992, pp. 912-917.
  • Fanuc. 2017. Utilizing Force Sensors in Your Robotic Applications. s.l.:s.n.
  • Iglesias, I., M. Sebastian, and J. Ares. 2015. “Overview of the State of Robotic Machining: Current Situation and Future Potential.” Procedia Engineering 132: 911–917. doi:10.1016/j.proeng.2015.12.577.
  • Jonsson, M., A. Stolt, A. Robertsson, S. Von Gegerfelt, and K. Nilsson. 2013. “On Force Control for Assembly and Deburring of Castings.” Production Engineering 7 (4): 351–360. doi:10.1007/s11740-013-0459-1.
  • Kazerooni, H. 1988. “Automated Robotic Deburring Using Impedance Control.” IEEE Control Systems Magazine 8 (1, Feb): 21–25. doi:10.1109/37.464.
  • Kramer, B. M., and S. S. Shim. 1990. “Development of a System for Robotic Deburring.” Robotics and Computer Integrated Manufacturing 7 (3): 291–295. doi:10.1016/0736-5845(90)90013-X.
  • Kuss, A., M. Drust, and A. Verl, 2016. “Detection of Workpiece Shape Deviations for Tool Path Adaptation in Robotic Deburring Systems.” Procedia CIRP, Volume 57, 2016, Pages 545-550, ISSN 2212-8271,https://doi.org/10.1016/j.procir.2016.11.094.
  • Lehmann, C., M. Pellicciari, M. Drust, and J. W. Gunnink. 2013. “Machining with Industrial Robots: The COMET Project Approach.” In A Cura Di Robotics in Smart Manufacturing: International Workshop, WRSM 2013, Co-Located with FAIM 2013, Porto, Portugal, June 26-28, 2013. Proceedings, edited by P. Neto and A. P. Moreira, 27–36. Berlin, Heidelberg: Springer Berlin Heidelberg.
  • Leonesio, M., P. Parenti, A. Cassinari, G. Bianchi, and M. Monno. 2012. “A Time-Domain Surface Grinding Model for Dynamic Simulation.” Procedia CIRP 4: 166–171. doi:10.1016/j.procir.2012.10.030.
  • Open Source Robotic Foundation (OSRF). 2017. ROS - Robot Operating System. www.ros.org, accessed July 3 2018
  • Pandremenos, J., C. Doukas, P. Stavropoulos, and G. Chryssolouris. 2011. Machining with Robots: A Critical Review, 614–621. Proceedings of DET2011 7th International Conference on Digital Enterprise Technology Athens, Greece, 2011.
  • Rea Minango, N., and C. Espindola Ferreira. 2017. “Combining the STEP-NC Standard and Forward and Inverse Kinematics Methods for Generating Manufacturing Tool Paths for Serial and Hybrid Robots.” International Journal of Computer Integrated Manufacturing 30 (11): 1203–1223. doi:10.1080/0951192X.2017.1305507.
  • Open Source Project. 2017. ROS Industrial. www.rosindustrial.org, accessed July 3 2018
  • Simoni, L., et al. 2017. On the Use of a Temperature Based Friction Model for a Virtual Force Sensor in Industrial Robot Manipulators. 22nd IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), Limassol, 2017, pp. 1-6.
  • Song, H. C., B. S. Kim, and J. B. Song. 2012. Tool Path Generation Based on Matching between Teaching Points and CAD Model for Robotic Deburring. IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), Kachsiung, 2012, pp. 890-895. doi: 10.1109/AIM.2012.6265921
  • Song, H., and J. Song. 2013. “Precision Robotic Deburring Based on Force Control for Arbitrarily Shaped Workpiece Using CAD Model Matching.” International Journal of Precision Engineering and Manufacturing 14 (1): 85–91. doi:10.1007/s12541-013-0013-2.
  • Thomessen, T., O. J. Elle, J. Lund Larsen, T. Andersen, J. E. Pedersen, and T. K. Lien. 1993. “Automatic Programming of Grinding Robot.” Modeling, Identification and Control 14 (2): 93–105. doi:10.4173/mic.1993.2.4.
  • Villagrossi, E., et al. 2017. “Flexible Robot-Based Cast Iron Deburring Cell for Small Batch Production Using Single-Point Laser Sensor.” The International Journal of Advanced Manufacturing Technology 92 (1-4):1425–1438.
  • Wang, X., Y. Wang, and Y. Xue. 2006. Adaptive Control of Robotic Deburring Process Based on Impedance Control. 2006 4th IEEE International Conference on Industrial Informatics, Singapore, 2006, pp. 921-925. doi: 10.1109/INDIN.2006.275700
  • Xi, F. J., T. Chen, and S. Guo. 2017. “Robotic Polishing and Deburring.” In Comprehensive Materials Finishing, edited by MSJ Hashmi, Elsevier, Oxford, 2017, pp. 121-153, ISBN 9780128032497. doi:10.1016/B978-0-12-803581-8.09151-7.
  • Zhang, H., et al. 2006. On-Line Path Generation for Robotic Deburring of Cast Aluminum Wheels. s.l., s.n. 2400–2405.
  • Ziliani, G., A. Visioli, and G. Legnani. 2007. “A Mechatronic Approach for Robotic Deburring.” Mechatronics 17 (8): 431–441. doi:10.1016/j.mechatronics.2007.04.012.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.