227
Views
3
CrossRef citations to date
0
Altmetric
Articles

Developing continuous machining strategy for cost-effective five-axis CNC milling systems with a four-axis controller

, , , & ORCID Icon
Pages 474-490 | Received 19 Apr 2019, Accepted 16 Feb 2020, Published online: 10 Mar 2020

References

  • Álvarez, Á., A. Calleja, N. Ortega, and L. N. Lopez de Lacalle. 2018a. “Five-axis Milling of Large Spiral Bevel Gears: Toolpath Definition, Finishing, and Shape Errors.” Metals 8 (5): 353. doi:10.3390/met8050353.
  • Álvarez, Á., A. Calleja, M. Arizmendi, H. González, and L. N. Lopez de Lacalle. 2018b. “Spiral Bevel Gears Face Roughness Prediction Produced by CNC End Milling Centers.” Materials 11 (8): 1301. doi:10.3390/ma11081301.
  • Artetxe, E., D. Olvera, H. González, A. Calleja, A. F. Valdivielso, R. Polvorosa, A. Lamikiz, and L. N. López de Lacalle. 2016. “Optimised Methodology for Aircraft Engine IBRs Five-axis Machining Process.” International Journal of Mechatronics and Manufacturing Systems 9 (4): 385–401.
  • Artetxe, E., D. Olvera, L. N. López de Lacalle, F. J. Campa, D. Olvera, and A. Lamikiz. 2017. “Solid Subtraction Model for the Surface Topography Prediction in Flank Milling of Thin-walled Integral Blade Rotors (Ibrs).” International Journal of Advanced Manufacturing Technology 90: 741–752. doi:10.1007/s00170-016-9435-1.
  • Bohez, E. L. 2002. “Compensating for Systematic Errors in 5-axis NC Machining.” Computer-Aided Design 34 (5): 391–403. doi:10.1016/S0010-4485(01)00111-7.
  • Calleja, A., P. Bo, H. Gonzalez, M. Barton, and L. N. Lopez de Lacalle. 2018. “Highly Accurate 5-axis Flank CNC Machining with Conical Tools.” International Journal of Advanced Manufacturing Technology 97: 1605–1615. doi:10.1007/s00170-018-2033-7.
  • Chanal, H., E. Duc, and P. Ray. 2006. “A Study of the Impact of Machine Tool Structure on Machining Processes.” International Journal of Machine Tools and Manufacture 46 (2): 98–106. doi:10.1016/j.ijmachtools.2005.05.004.
  • Chen, D., H. Wang, R. Pan, J. Fan, and Q. Cheng. 2017. “An Accurate Characterization Method to Tracing the Geometric Defect of the Machined Surface for Complex Five-axis Machine Tools.” International Journal of Advanced Manufacturing Technology 93: 3395–3408. doi:10.1007/s00170-017-0718-y.
  • Chen, Y. D., J. Ni, and S. M. Wu. 1993. “Real-time CNC Tool Path Generation for Machining IGES Surfaces.” Journal of Engineering for Industry 115 (4): 480–486. doi:10.1115/1.2901793.
  • Ding, S., X. Huang, C. Yu, and X. Liu. 2016. “Novel Method for Position-independent Geometric Error Compensation of Five-axis Orthogonal Machine Tool Based on Error Motion.” International Journal of Advanced Manufacturing Technology 83 (5–8): 1069–1078. doi:10.1007/s00170-015-7642-9.
  • Fan, W., X. Gao, C. Lee, L. Zhang, and Q. Zhang. 2013. “Time-optimal Interpolation for Five-axis CNC Machining along Parametric Tool Path Based on Linear Programming.” International Journal of Advanced Manufacturing Technology 69: 1373–1388. doi:10.1007/s00170-013-5083-x.
  • Geng, C., and Y. Wu. 2016. “An Interpolation Method Based on Tool Orientation Fitting in Five-axis CNC Machining.” Proceedings of 2016 IEEE 14th International Conference on Industrial Informatics (INDIN), 213–218. Poitiers, France, July 19–21.
  • Givi, M., and J. R. R. Mayer. 2016. “Optimized Volumetric Error Compensation for Five-axis Machine Tools considering Relevance and Compensability.” CIRP Journal of Manufacturing Science and Technology 12: 44–55. doi:10.1016/j.cirpj.2015.09.002.
  • Gu, J., J. S. Agapiou, and S. Kurgin. 2017. “Error Compensation and Accuracy Improvements in 5-axis Machine Tools Using the Global Offset Method.” Journal of Manufacturing Systems 44 (2): 324–331. doi:10.1016/j.jmsy.2017.04.015.
  • Hassan, M., A. Sadek, A. Damir, M. H. Attia, and V. Thomson. 2018. “A Novel Approach for Real-time Prediction and Prevention of Tool Chipping in Intermittent Turning Machining.” CIRP Journal of Manufacturing Science and Technology 67: 41–44. doi:10.1016/j.cirp.2018.04.065.
  • Imani, B. M., and A. Ghandehariun. 2011. “Real-time Ph-based Interpolation Algorithm for High Speed CNC Machining.” International Journal of Advanced Manufacturing Technology 56: 619–629. doi:10.1007/s00170-011-3200-2.
  • Khoshdarregi, M. R., S. Tappe, and Y. Altintas. 2014. “Integrated Five-axis Trajectory Shaping and Contour Error Compensation for High-speed CNC Machine Tools.” IEEE/ASME Transactions on Mechatronics 19 (6): 1859–1871. doi:10.1109/TMECH.2014.2307473.
  • Kim, B. H., and C. N. Chu. 1994. “Effect of Cutter Mark on Surface Roughness and Scallop Height in Sculptured Surface Machining.” Computer-Aided Design 26 (3): 179–188. doi:10.1016/0010-4485(94)90041-8.
  • Lasemi, A., D. Xue, and P. Gu. 2010. “Recent Development in CNC Machining of Freeform Surfaces: A State-of-the-art Review.” Computer-Aided Design 42: 641–654. doi:10.1016/j.cad.2010.04.002.
  • Lee, Y. S. 1997. “Admissible Tool Orientation Control of Gouging Avoidance for 5-axis Complex Surface Machining.” Computer-Aided Design 29 (7): 507–521. doi:10.1016/S0010-4485(97)00002-X.
  • Lee, Y. S., and T. C. Chang. 1995. “2-phase Approach to Global Tool Interference Avoidance in 5-axis Machining.” Computer-Aided Design 27 (10): 715–729. doi:10.1016/0010-4485(94)00021-5.
  • Lei, W. T., and Y. Y. Hsu. 2003. “Accuracy Enhancement of Five-axis CNC Machines through Real-time Error Compensation.” International Journal of Machine Tools and Manufacture 43 (9): 871–877. doi:10.1016/S0890-6955(03)00089-0.
  • Li, S. X., and R. B. Jerard. 1994. “5-axis Machining of Sculptured Surfaces with a Flat-end Cutter.” Computer-Aided Design 26 (3): 165–178. doi:10.1016/0010-4485(94)90040-X.
  • Liang, H., H. Hong, and J. Svoboda. 2002. “A Combined 3D Linear and Circular Interpolation Technique for Multi-axis CNC Machining.” Journal of Manufacturing Science and Engineering 124: 305–312. doi:10.1115/1.1445154.
  • López de Lacalle, L. N., A. Lamikiz, J. Munoa, and J. A. Sanchez. 2005. “The CAM as the Centre of Gravity of the Five-axis High Speed Milling of Complex Parts.” International Journal of Production Research 43 (10): 1983–1999. doi:10.1080/00207540412331330129.
  • Lu, Y., Q. Bi, and L. Zhu. 2016. “Five-axis Flank Milling Tool Path Generation with Smooth Rotary Motions.” Procedia CIRP 56: 161–166. doi:10.1016/j.procir.2016.10.047.
  • Omirou, S. L. 2004. “A CNC Interpolation Algorithm for Boundary Machining.” Robotics and Computer-Integrated Manufacturing 20: 255–264. doi:10.1016/j.rcim.2003.10.009.
  • Quail, K. W. 1989. “Ball-mills versus End-mills for Curved Surface Machining.” Journal of Engineering for Industry 111 (1): 22–26. doi:10.1115/1.3188728.
  • Rao, N., F. Ismail, and S. Bedi. 1997. “Tool Path Planning for Five-axis Machining Using the Principal Axis Method.” International Journal of Machine Tools and Manufacture 37 (7): 1025–1040. doi:10.1016/S0890-6955(96)00046-6.
  • Sato, R., K. Shirase, and Y. Ihara. 2018. “Influence of NC Program Quality and Geometric Errors of Rotary Axes on S-shaped Machining Test Accuracy.” Journal of Manufacturing and Materials Processing 2: 21. doi:10.3390/jmmp2020021.
  • Sencer, B., Y. Altintas, and E. Croft. 2009. “Modeling and Control of Contouring Errors for Five-axis Machine Tools – Part I: Modeling.” Journal of Manufacturing Science and Engineering 131: 031006–1:031006-8. doi:10.1115/1.3123335.
  • Song, Z., and Y. Cui. 2011. U.S. Patent No. 8,061,052. Washington, DC: U.S. Patent and Trademark Office.
  • Sprott, K. 2016. “Surface Normal Interpolation for Five Axis CNC Milling.” International Journal of Advanced Manufacturing Technology 84 (9–12): 2319–2329. doi:10.1007/s00170-015-7790-y.
  • Suh, S. H., and J. J. Lee. 1998. “Five-axis Part Machining with Three-axis CNC Machine and Indexing Table.” Journal of Manufacturing Science and Engineering 120 (1): 120–128. doi:10.1115/1.2830087.
  • Suh, S. H., J. J. Lee., and S. K. Kim. 1998. “Multi-axis Machining with Additional-axis NC System: Theory and Development.” International Journal of Advanced Manufacturing Technology 14 (12): 865–875. doi:10.1007/BF01179075.
  • Tulsyan, S., and Y. Altintas. 2015. “Local Toolpath Smoothing for Five-axis Machine Tools.” International Journal of Machine Tools and Manufacture 96: 15–26. doi:10.1016/j.ijmachtools.2015.04.014.
  • Weremczuk, A., R. Rusinek, and J. Warminski. 2015. “The Concept of Active Elimination of Vibrations in Milling Process.” Procedia CIRP 31: 82–87. doi:10.1016/j.procir.2015.03.036.
  • Xiang, S., and Y. Altintas. 2016. “Modeling and Compensation of Volumetric Errors for Five-axis Machine Tools.” International Journal of Machine Tools and Manufacture 101: 65–78. doi:10.1016/j.ijmachtools.2015.11.006.
  • Zhang, S. J., S. To, G. Q. Zhang, and Z. W. Zhu. 2015. “A Review of Machine-tool Vibration and Its Influence upon Surface Generation in Ultra-precision Machining.” International Journal of Machine Tools and Manufacture 91: 34–42. doi:10.1016/j.ijmachtools.2015.01.005.
  • Zhao, H., L. Zhu, and H. Ding. 2013. “A Real-time Look-ahead Interpolation Methodology with Curvature-continuous B-spline Transition Scheme for CNC Machining of Short Line Segments.” International Journal of Machine Tools and Manufacture 65: 88–98. doi:10.1016/j.ijmachtools.2012.10.005.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.