241
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Surface roughness prediction framework for flank milling Ti6Al4V alloy based on CLBAS-BP algorithm

, , , , ORCID Icon, & show all
Pages 830-841 | Received 22 Mar 2022, Accepted 17 Oct 2022, Published online: 07 Dec 2022

References

  • Alajmi, M. S., and A. M. Almeshal. 2020. “Prediction and Optimization of Surface Roughness in a Turning Process Using the ANFIS-QPSO Method.” Materials 13 (13): 2986. doi:10.3390/ma13132986.
  • Alatas, B. 2010. “Chaotic Bee Colony Algorithms for Global Numerical Optimization.” Expert Systems with Applications 37 (8): 5682–5687. doi:10.1016/j.eswa.2010.02.042.
  • Atan, E., and S. Ozdemir. 2005. “Intelligence Modeling of the Transient Asperity Temperatures in Meshing Spur Gears.” Mechanism and Machine Theory 40 (1): 119–127. doi:10.1016/j.mechmachtheory.2004.06.006.
  • Bouzakis, K. D., P. Aichouh, and K. Efstathiou. 2003. “Determination of the Chip Geometry, Cutting Force and Roughness in Free Form Surfaces Finishing Milling, with Ball End Tools.” International Journal of Machine Tools & Manufacture 43 (5): 499–514. doi:10.1016/S0890-6955(02)00265-1.
  • Chen, J. S. B., Y. K. Huang, and M. S. Chen. 2005. “Feedrate Optimization and Tool Profile Modification for the High-Efficiency Ball-End Milling Process.” International Journal of Machine Tools & Manufacture 45 (9): 1070–1076. doi:10.1016/j.ijmachtools.2004.11.020.
  • Du, F., L. He, H. Huang, T. Zhou, and J. Wu. 2020. “Analysis and Multi-Objective Optimization for Reducing Energy Consumption and Improving Surface Quality During Dry Machining of 304 Stainless Steel.” Materials 13 (21): 4693. doi:10.3390/ma13214693.
  • Du, Y., Q. Song, and Z. Liu. 2022. “Prediction of Micro Milling Force and Surface Roughness Considering Size-Dependent Vibration of Micro-End Mill.” International Journal of Advanced Manufacturing Technology 119 (9): 5807–5820. doi:10.1007/s00170-021-08535-9.
  • Ghosh, T., Y. Wang, K. Martinsen, and K. Wang. 2020. “A Surrogate-Assisted Optimization Approach for Multi-Response End Milling of Aluminum Alloy AA3105.” International Journal of Advanced Manufacturing Technology 111 (9): 2419–2439. doi:10.1007/s00170-020-06209-6.
  • Hänel, A., A. Seidel, U. Frieß, et al.2021. “Digital Twins for High-Tech Machining Applications—a Model-Based Analytics-Ready Approach.” Journal of Manufacturing and Materials Processing 5 (3): 80. doi:10.3390/jmmp5030080.
  • Hao, Y., and Y. Liu. 2017. “Analysis of Milling Surface Roughness Prediction for Thin-Walled Parts with Curved Surface.” International Journal of Advanced Manufacturing Technology 93 (5): 2289–2297. doi:10.1007/s00170-017-0615-4.
  • Heidari, A. A., and P. Pahlavani. 2017. “An Efficient Modified Grey Wolf Optimizer with Lévy Flight for Optimization Tasks.” Applied Soft Computing 60: 115–134. doi:10.1016/j.asoc.2017.06.044.
  • Kim, B. H., and C. N. Chu. 1999. “Texture Prediction of Milled Surfaces Using Texture Superposition Method.” Computer-Aided Design 31 (8): 485–494. doi:10.1016/S0010-4485(99)00045-7.
  • Ky, L. H., N. T. Nguyen, D. T. Do, T. D. Hoang, and H. A. Le. 2020. “Modeling the Surface Roughness in Face-End Milling Process by Using General Insert at Stable Cutting Conditions.” International Journal of Modern Physics: B 34 (22n24): 2040143. doi:10.1142/S0217979220401438.
  • Lazoglu, I. 2017. “3D Surface Topography Analysis in 5-Axis Ball-End Milling.” CIRP Annals 66 (1): 133–136. doi:10.1016/j.cirp.2017.04.021.
  • Li, X., Q. Jiang, M. K. Hsu, and Q. Chen. 2019. “Support or Risk? Software Project Risk Assessment Model Based on Rough Set Theory and Backpropagation Neural Network.” Sustainability 11 (17): 4513. doi:10.3390/su11174513.
  • Lu, X., X. Hu, Z. Jia, M. Liu, S. Gao, C. Qu, and S. Y. Liang. 2018. “Model for the Prediction of 3D Surface Topography and Surface Roughness in Micro-Milling Inconel 718.” International Journal of Advanced Manufacturing Technology 94 (5): 2043–2056. doi:10.1007/s00170-017-1001-y.
  • Munoz-Escalona, P., and P. G. Maropoulos. 2015. “A Geometrical Model for Surface Roughness Prediction When Face Milling Al 7075-T7351 with Square Insert Tools[j].” Journal of Manufacturing Systems 36: 216–223. doi:10.1016/j.jmsy.2014.06.011.
  • Nguyen, T. T. 2019. “Prediction and Optimization of Machining Energy, Surface Roughness, and Production Rate in SKD61 Milling.” Measurement 136: 525–544. doi:10.1016/j.measurement.2019.01.009.
  • Niu, C., L. Han, S. Li, J. Guo, and J. Liu. 2018. “Research on Shield Tool Configuration Based on PSO-BP Neural Network.” Chinese Journal of Mechanical Engineering 54 (10): 184–189. doi:10.3901/JME.2018.10.167.
  • Pan, Y., Y. Wang, P. Zhou, Y. Yan, and D. Guo. 2020. “Activation Functions Selection for BP Neural Network Model of Ground Surface Roughness.” Journal of Intelligent Manufacturing 31 (8): 1825–1836. doi:10.1007/s10845-020-01538-5.
  • Pawade, R. S., S. S. Joshi, P. K. Brahmankar, and M. Rahman. 2007. “An Investigation of Cutting Forces and Surface Damage in High-Speed Turning of Inconel 718.” Journal of Materials Processing Technology 192: 139–146. doi:10.1016/j.jmatprotec.2007.04.049.
  • Pelayo, G. U., D. Olvera-Trejo, M. Luo, L. L. de Lacalle, and A. Elías-Zuñiga. 2021. “Surface Roughness Prediction with New Barrel-Shape Mills Considering Runout: Modelling and Validation.” Measurement 173: 108670. doi:10.1016/j.measurement.2020.108670.
  • Quinsat, Y., L. Sabourin, and C. Lartigue. 2008. “Surface Topography in Ball End Milling Process: Description of a 3D Surface Roughness Parameter.” Journal of Materials Processing Technology 195 (1–3): 135–143. doi:10.1016/j.jmatprotec.2007.04.129.
  • Ramos, A. C., H. Autenrieth, T. Strauß, M. Deuchert, J. Hoffmeister, and V. Schulze. 2012. “Characterization of the Transition from Ploughing to Cutting in Micro Machining and Evaluation of the Minimum Thickness of Cut.” Journal of Materials Processing Technology 212 (3): 594–600. doi:10.1016/j.jmatprotec.2011.07.007.
  • Rodríguez, J. J., G. Quintana, A. Bustillo, and J. Ciurana. 2017. “A Decision-Making Tool Based on Decision Trees for Roughness Prediction in Face Milling.” International Journal of Computer Integrated Manufacturing 30 (9): 943–957. doi:10.1080/0951192X.2016.1247991.
  • Tangjitsitcharoen, S., P. Thesniyom, and S. Ratanakuakangwan. 2017. “Prediction of Surface Roughness in Ball-End Milling Process by Utilizing Dynamic Cutting Force Ratio.” Journal of Intelligent Manufacturing 28 (1): 13–21. doi:10.1007/s10845-014-0958-8.
  • Venkata Rao, K., and P. B. G. S. N. Murthy. 2018. “Modeling and Optimization of Tool Vibration and Surface Roughness in Boring of Steel Using RSM, ANN and SVM.” Journal of Intelligent Manufacturing 29 (7): 1533–1543. doi:10.1007/s10845-016-1197-y.
  • Wang, J., and H. Chen. 2018. ”BSAS: Beetle Swarm Antennae Search Algorithm for Optimization Problems.” arXiv preprint arXiv:1807.10470.
  • Wang, B., Q. Zhang, M. Wang, Y. Zheng, and X. Kong. 2020. “A Predictive Model of Milling Surface Roughness.” International Journal of Advanced Manufacturing Technology 108 (9): 2755–2762. doi:10.1007/s00170-020-05599-x.
  • Wojciechowski, S., T. Chwalczuk, P. Twardowski, and G. M. Krolczyk. 2015. “Modeling of Cutter Displacements During Ball End Milling of Inclined Surfaces.” Archives of Civil and Mechanical Engineering 15 (4): 798–805. doi:10.1016/j.acme.2015.06.008.
  • Xu, X., K. Deng, and B. Shen. 2020. “A Beetle Antennae Search Algorithm Based on Lévy Flights and Adaptive Strategy.” Systems Science & Control Engineering 8 (1): 35–47. doi:10.1080/21642583.2019.1708829.
  • Xu, L., C. Huang, C. Li, J. Wang, H. Liu, and X. Wang. 2021. “An Improved Case Based Reasoning Method and Its Application in Estimation of Surface Quality Toward Intelligent Machining.” Journal of Intelligent Manufacturing 32 (1): 313–327. doi:10.1007/s10845-020-01573-2.
  • Yuan, Y., X. Jing, K. F. Ehmann, and D. Zhang. 2018. “Surface Roughness Modeling in Micro End-Milling.” International Journal of Advanced Manufacturing Technology 95 (5): 1655–1664. doi:10.1007/s00170-017-1278-x.
  • Zhao, Z., X. Liu, C. Yue, R. Li, H. Zhang, and S. Liang. 2020. “Tool Quality Life During Ball End Milling of Titanium Alloy Based on Tool Wear and Surface Roughness Models.” Applied Sciences 10 (9): 3316. doi:10.3390/app10093316.
  • Zhou, Y., Y. Tian, X. Jing, F. Wang, and Y. Liu. 2018. “Surface Topography Modeling and Roughness Extraction in Helical Milling Operation.” International Journal of Advanced Manufacturing Technology 95 (9): 4561–4571. doi:10.1007/s00170-017-1516-2.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.