71
Views
0
CrossRef citations to date
0
Altmetric
Research Article

An AutomationML extension towards interoperability of 3D virtual commissioning software applications

ORCID Icon, ORCID Icon & ORCID Icon
Received 24 Feb 2023, Accepted 02 Nov 2023, Published online: 15 Dec 2023

References

  • Adnan, M. F., M. F. Daud, and M. S. Saud. 2014. “Contextual Knowledge in Three Dimensional Computer Aided Design (3D CAD) Modeling: A Literature Review and Conceptual Framework.” In 2014 International Conference on Teaching and Learning in Computing and Engineering,apr.IEEE. https://doi.org/10.1109/latice.2014.41.
  • Adolphs, P., H. Bedenbender, M. E. Dagmar Dirzus, U. Epple, M. Hankel, and R. Heidel. 2015. “Status Report-Reference Architecture Model Industrie 4.0 (Rami4.0).” VDI-Verein Deutscher Ingenieure eV and ZVEI-German Electrical and Electronic Manufacturers Association, Tech. Rep https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2016/januar/GMA_Status_Report__Reference_Archtitecture_Model_Industrie_4.0__RAMI_4.0_/GMA-Status-Report-RAMI-40-July-2015.pdf.
  • An, Y., F. Qin, B. Chen, R. Simon, and H. Wu. 2020. “OntoPlc: Semantic Model of PLC Programs for Code Exchange and Software Reuse.” IEEE Transactions on Industrial Informatics 17 (3): 1702–1711. https://doi.org/10.1109/TII.2020.2997360.
  • Arroyo, E., M. Hoernicke, P. Rodríguez, and A. Fay. 2016. “Automatic Derivation of Qualitative Plant Simulation Models from Legacy Piping and Instrumentation Diagrams.” Computers & Chemical Engineering 92:112–132. https://doi.org/10.1016/j.compchemeng.2016.04.040.
  • AutomationML. 2014. Whitepaper Part 5 - Communication. Technical Report. AutomationML consortium. https://www.automationml.org/wp-content/uploads/2021/06/WP_Communication_V1.0.0.zip.
  • AutomationML. 2017a. Best Practice Recommendation: DataVariable. Technical Report. AutomationML consortium. https://www.automationml.org/wp-content/uploads/2022/05/BPR_007E_BPR_DataVariable_V1.0.0.zip.
  • AutomationML. 2017b. Whitepaper Part 3 - Geometry and Kinematics. Technical Report. AutomationML consortium. https://www.automationml.org/wp-content/uploads/2021/06/AML_Whitepaper_GeometryKinematics_V2.0.0.zip.
  • AutomationML. 2021. Application Recommendations: Automation Project Configuration. Technical Report. AutomationML consortium. https://www.automationml.org/wp-content/uploads/2021/11/AR-APC-1_3_0.zip.
  • AutomationML. 2023. Application Recommendation: Toolchain. Technical Report. AutomationML consortium. https://www.automationml.org/wp-content/uploads/2023/06/AR_Toolchain.pdf.
  • Ayani, M., M. Ganebäck, and A. H. C. Ng. 2018. “Digital Twin: Applying Emulation for Machine Reconditioning.” 51st CIRP Conference on Manufacturing Systems 72, 243–248. https://doi.org/10.1016/j.procir.2018.03.139.
  • Babcinschi, M., B. Freire, P. Neto, L. Alonso Ferreira, B. Lodeiro Señaris, and F. Vidal. 2019. “AutomationMl for Data Exchange in the Robotic Process of Metal Additive Manufacturing.” In 2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA), 65–70. IEEE. https://doi.org/10.1109/ETFA.2019.8869079.
  • Barbieri, G., A. Bertuzzi, A. Capriotti, L. Ragazzini, D. Gutierrez, E. Negri, and L. Fumagalli. 2021. “A Virtual Commissioning Based Methodology to Integrate Digital Twins into Manufacturing Systems.” Production Engineering 15 (3): 397–412. https://doi.org/10.1007/s11740-021-01037-3.
  • Barnes, M., and E. L. Finch. 2008. “COLLADA–digital asset schema release 1.5.0.” Specification, Khronos Group. https://www.khronos.org/files/collada_spec_1_5.pdf.
  • Barth, M., and A. Fay. 2013. “Automated Generation of Simulation Models for Control Code Tests.” Control Engineering Practice 21 (2): 218–230. https://doi.org/10.1016/j.conengprac.2012.09.022.
  • Beisheim, N., M. Kiesel, M. Linde, and T. Ott. 2020. “Using AutomationMl and Graph-Based Design Languages for Automatic Generation of Digital Twins of Cyber-Physical Systems.” In Transdisciplinary Engineering for Complex Socio-Technical Systems–Real-life Applications, 135–142. IOS Press. https://doi.org/10.3233/ATDE200070.
  • Beisheim, N., M. Linde, T. Ott, and S. Amann. 2021. “Using AutomationMl to Generate Digital Twins of Tooling Machines for the Purpose of Developing Energy Efficient Production Systems.” In Transdisciplinary Engineering for Resilience: Responding to System Disruptions, 141–150. IOS Press. https://doi.org/10.3233/atde210092.
  • Berardinelli, L., S. Biffl, E. Maetzler, T. Mayerhofer, and M. Wimmer. 2015. “Model-Based Co-Evolution of Production Systems and Their Libraries with AutomationMl.” In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 1–8. IEEE. https://doi.org/10.1109/ETFA.2015.7301483.
  • Breckle, T., J. Kiefer, S. Rudolph, and M. Manns. 2017. “Engineering of Assembly Systems Using Graph-Based Design Languages.” In DS 87-1 Proceedings of the 21st International Conference on Engineering Design (ICED 17) Vol 1: Resource Sensitive Design, Design Research Applications and Case Studies, Vancouver, Canada, September 21-25, 2017, 519–528. https://www.designsociety.org/download-publication/39551/Engineering+of+assembly+systems+using+graph-based+design+languages.
  • Drath, R. 2021a. AutomationMl: A Practical Guide. Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110746235.
  • Drath, R. 2021b. AutomationMl: The Industrial Cookbook. Walter de Gruyter GmbH & Co KG. https://doi.org/10.1515/9783110745979.
  • Drath, R., A. Luder, J. Peschke, and L. Hundt. 2008. “AutomationMl-The Glue for Seamless Automation Engineering.” In 2008 IEEE International Conference on Emerging Technologies and Factory Automation, 616–623. IEEE. https://doi.org/10.1109/ETFA.2008.4638461.
  • Drath, R., C. Mosch, S. Hoppe, A. Faath, E. Barnstedt, B. Fiebiger, and W. Schlögl. 2023. Diskussionspapier – Interoperabilität mit der Verwaltungsschale, OPC UA und AutomationML. Technical Report. AutomationML e.V and Industrial Digital Twin Association (IDTA) and OPC Foundation and VDMA. https://www.automationml.org/wp-content/uploads/2023/04/Diskussionspapier-Zielbild-und-Handlungsempfehlungen-fuer-industrielle-Interoperabilitaet-5.3.pdf.
  • Drath, R., P. Weber, and N. Mauser. 2008. “An Evolutionary Approach for the Industrial Introduction of Virtual Commissioning.” In 2008 IEEE International Conference on Emerging Technologies and Factory Automation, sep. IEEE. https://doi.org/10.1109/etfa.2008.4638359.
  • Estévez, E., M. Marcos, A. Lüder, and L. Hundt. 2010. “PLCopen for Achieving Interoperability Between Development Phases.” In 2010 IEEE 15th Conference on Emerging Technologies & Factory Automation (ETFA 2010), 1–8. IEEE. https://doi.org/10.1109/ETFA.2010.5641359.
  • FMI. 2023. “FMI standard.” Accessed June 29, 2023. https://fmi-standard.org.
  • Fraile, F., R. Sanchis, R. Poler, and A. Ortiz. 2019. “Reference models for digital manufacturing platforms.” Applied Sciences 9 (20): 4433. https://doi.org/10.3390/app9204433.
  • Graeser, O., B. Kumar, O. Niggemann, N. Moriz, and A. Maier. 2011. “AutomationMl as a Basis for Offline - and Realtime-Simulation - Planning, Simulation and Diagnosis of Automation Systems.” In International Conference on Informatics in Control, Automation and Robotics, IEEE. https://doi.org/10.5220/0003537403590368.
  • Gunnarsson, S. 2016. “Evaluation of FMI-Based Workflow for Simulation and Testing of Industrial Automation Applications.” Master Thesis.https://www.lu.se/lup/publication/8776878.
  • Hankel, M., and B. Rexroth. 2015. “The reference architectural model industrie 4.0 (rami 4.0).” Zvei 2 (2): 4–9. https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2015/april/Das_Referenzarchitekturmodell_Industrie_4.0__RAMI_4.0_/ZVEI-Industrie-40-RAMI-40-English.pdf.
  • Henßen, R., and M. Schleipen. 2014. “Interoperability Between OPC UA and AutomationMl.”8th International Conference on Digital Enterprise Technology - DET 2014 Disruptive Innovation in Manufacturing Engineering towards the 4th Industrial Revolution 25, 297–304. https://doi.org/10.1016/j.procir.2014.10.042.
  • Hoernicke, M., A. Fay, and M. Barth. 2015. “Virtual Plants for Brown-Field Projects.” In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), IEEE. https://doi.org/10.1109/etfa.2015.7301462.
  • Hoffmann, P., R. Schumann, T. M. Maksoud, and G. C. Premier. 2010. “Virtual Commissioning of Manufacturing Systems a Review and New Approaches for Simplification.” In ECMS, 175–181. Kuala Lumpur, Malaysia. https://doi.org/10.7148/2010-0175-0181.
  • Holm, T., L. Christiansen, M. Göring, T. Jäger, and A. Fay. 2012. “ISO 15926 Vs. IEC 62424—Comparison of Plant Structure Modeling Concepts.” In Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory Automation (ETFA 2012), 1–8. IEEE. https://doi.org/10.1109/ETFA.2012.6489662.
  • Jackson, C. 2019. “What is FMI? How is It Related to Virtual Commissioning?” Accessed June 29, 2023. https://virtualcommissioning.com/what-is-fmi-how-is-it-related-to-virtual-commissioning.
  • Jackson, C. 2020. “Digital Twins of Production Systems: 1D? 3D? What is the Best Fit?” Accessed June 29, 2023. https://virtualcommissioning.com/digital-twins-of-production-systems-1d-3d-what-is-the-best-fit.
  • Kaiser, B., A. Reichle, and A. Verl. 2022. “Model-Based Automatic Generation of Digital Twin Models for the Simulation of Reconfigurable Manufacturing Systems for Timber Construction.” Leading manufacturing systems transformation – Proceedings of the 55th CIRP Conference on Manufacturing Systems 2022 107, 387–392. https://doi.org/10.1016/j.procir.2022.04.063.
  • Kiesel, M., P. Klimant, N. Beisheim, S. Rudolph, and M. Putz. 2017. “Using Graph-Based Design Languages to Enhance the Creation of Virtual Commissioning Models.” Complex Systems Engineering and Development Proceedings of the 27th CIRP Design Conference, Vol. 60, 279–283. https://doi.org/10.1016/j.procir.2017.01.047.
  • Lattanzi, L., R. Raffaeli, M. Peruzzini, and M. Pellicciari. 2021. “Digital Twin for Smart Manufacturing: A Review of Concepts Towards a Practical Industrial Implementation.” International Journal of Computer Integrated Manufacturing 34 (6): 567–597. https://doi.org/10.1080/0951192X.2021.1911003.
  • Li, H., L. Tian, and B. Vogel-Heuser. 2019. “Automatic Synchronization of Mechanical CAD Models and a SysMl-Based Mechatronic Model Using AutomationMl.” In 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC), IEEE. https://doi.org/10.1109/smc.2019.8913908.
  • Li, Y., M. Hedlind, T. Kjellberg, and G. Sivard. 2015. “System Integration For Kinematic Data Exchange.” International Journal of Computer Integrated Manufacturing 28 (1): 87–97. https://doi.org/10.1080/0951192X.2014.941937.
  • Lüder, A., and N. Schmidt. 2017. “AutomationMl in a Nutshell.” In Handbuch Industrie 4.0 Bd, 213–258, Vol. 2. Springer. https://doi.org/10.1007/978-3-662-53248-5_61.
  • Lüder, A., N. Schmidt, and R. Rosendahl. 2015. “Data Exchange Toward PLC Programming and Virtual Commissioning: Is AutomationMl an Appropriate Data Exchange Format?” In 2015 IEEE 13th International Conference on Industrial Informatics (INDIN). IEEE. https://doi.org/10.1109/indin.2015.7281783.
  • Lüder, A., N. Schmidt, R. Rosendahl, and M. John. 2014. “Integrating Different Information Types within AutomationMl.” In Proceedings of the 2014 IEEE Emerging Technology and Factory Automation (ETFA), 1–5. IEEE. https://doi.org/10.1109/ETFA.2014.7005275.
  • Martinez, G. S., S. A. Sierla, T. A. Karhela, J. Lappalainen, and V. Vyatkin. 2018. “Automatic Generation of a High-Fidelity Dynamic Thermal-Hydraulic Process Simulation Model from a 3D Plant Model.” Institute of Electrical and Electronics Engineers Access 6:45217–45232. https://doi.org/10.1109/access.2018.2865206.
  • Metzner, M., F. Albrecht, M. Fiegert, B. Bauer, S. Martin, E. Karlidag, A. Blank, and J. Franke. 2022. “Virtual Training and Commissioning of Industrial Bin Picking Systems Using Synthetic Sensor Data and Simulation.” International Journal of Computer Integrated Manufacturing 35 (4–5): 483–492. https://doi.org/10.1080/0951192X.2021.2004618.
  • Müller, T., S. Kamm, A. Löcklin, D. White, M. Mellinger, N. Jazdi, and M. Weyrich. 2022. “Architecture and Knowledge Modelling for Self-Organized Reconfiguration Management of Cyber-Physical Production Systems.” International Journal of Computer Integrated Manufacturing 1–22. https://doi.org/10.1080/0951192X.2022.2121425.
  • Nagorny, K., S. Scholze, A. Walter Colombo, and J. Barata Oliveira. 2020. “A DIN Spec 91345 RAMI 4.0 Compliant Data Pipelining Model: An Approach to Support Data Understanding and Data Acquisition in Smart Manufacturing Environments.” Institute of Electrical and Electronics Engineers Access 8:223114–223129. https://doi.org/10.1109/ACCESS.2020.3045111.
  • Oppelt, M., G. Wolf, O. Drumm, B. Lutz, M. Stöß, and L. Urbas. 2014. “Automatic Model Generation for Virtual Commissioning Based on Plant Engineering Data.” IFAC Proceedings Volumes 47 (3): 11635–11640. https://doi.org/10.3182/20140824-6-za-1003.01512.
  • Park, H.-T., J.-G. Kwak, G.-N. Wang, and S. C. Park. 2009. “Plant Model Generation for PLC Simulation.” International Journal of Production Research 48 (5): 1517–1529. https://doi.org/10.1080/00207540802577961.
  • Prat, S., J. Cavron, D. Kesraoui, P. Rauffet, P. Berruet, and A. Bignon. 2017. “An Automated Generation Approach of Simulation Models for Checking Control/Monitoring System.” IFAC-Papersonline 50 (1): 6202–6207. https://doi.org/10.1016/j.ifacol.2017.08.1014.
  • Pratt, M. J. 2001. “Introduction to ISO 10303—The STEP Standard for Product Data Exchange.” Journal of Computing and Information Science in Engineering 1 (1): 102–103. https://doi.org/10.1115/1.1354995.
  • Schamp, M., S. Hoedt, A. Claeys, E.-H. Aghezzaf, and J. Cottyn. 2018. “Impact of a Virtual Twin on Commissioning Time and Quality.” IFAC-Papersonline 51 (11): 1047–1052. https://doi.org/10.1016/j.ifacol.2018.08.469.
  • Schopper, D., K. Kübler, S. Rudolph, and O. Riedel. 2021. “EIPPM—The Executable Integrative Product-Production Model.” Computers 10 (6): 72. https://doi.org/10.3390/computers10060072.
  • Schweichhart, K. 2016. “Reference Architectural Model Industrie 4.0 (Rami 4.0).” https://img5.custompublish.com/getfile.php/3901260.2265.akzillql7uuipz/RAMEI+4.0.pdf.
  • Schyja, A., M. Bartelt, and B. Kuhlenkötter. 2014. “From Conception Phase Up to Virtual Verification Using AutomationMl.” Procedia CIRP 23:171–177. https://doi.org/10.1016/j.procir.2014.10.067.
  • Süß, S., A. Strahilov, and C. Diedrich. 2015. “Behaviour Simulation for Virtual Commissioning Using Co-Simulation.” In 2015 IEEE 20th Conference on Emerging Technologies & Factory Automation (ETFA), 1–8. IEEE. https://doi.org/10.1109/ETFA.2015.7301427.
  • Tao, F., H. Zhang, A. Liu, and A. Y. Nee. 2018. “Digital Twin in Industry: State-Of-The-Art.” IEEE Transactions on Industrial Informatics 15 (4): 2405–2415. https://doi.org/10.1109/TII.2018.2873186.
  • Thongnuch, M. S. S. 2021. “An Approach to Generating High-fidelity Models for the Virtual Commissioning of Specialized Production Machines and Cells Using MCAD models.” PhD diss., Universitätsbibliothek der HSU/UniBwH. https://doi.org/10.24405/13877.
  • Thongnuch, S., and A. Fay. 2017. “A practical simulation model generation for virtual commissioning.” In 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), 1077–1082. IEEE. https://doi.org/10.1109/AIM.2017.8014162.
  • Thongnuch, S., A. Fay, and R. Drath. 2018. “Semi-Automatic Generation of a Virtual Representation of a Production Cell.” at-Automatisierungstechnik 66 (5): 372–384. https://doi.org/10.1515/auto-2017-0108.
  • Ugarte, M., L. Etxeberria, G. Unamuno, J. Luis Bellanco, and E. Ugalde. 2022. “Implementation of Digital Twin-Based Virtual Commissioning in Machine Tool Manufacturing.” 3rd International Conference on Industry 4.0 and Smart Manufacturing 200, 527–536. https://doi.org/10.1016/j.procs.2022.01.250.
  • Wang, X. V., and X. W. Xu. 2015. “A Collaborative Product Data Exchange Environment Based on STEP.” International Journal of Computer Integrated Manufacturing 28 (1): 75–86. https://doi.org/10.1080/0951192X.2013.785028.
  • Wardhani, R., and X. Xun 2016. “Model-Based Manufacturing Based on STEP AP242.” In 2016 12th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications (MESA), IEEE. https://doi.org/10.1109/mesa.2016.7587187.
  • Westkämper, E., T. Baudisch, W. Schlögl, and G. Frank. 2012. “Automatic Model Generation for Virtual Commissioning of Specialized Production Machines.” Softwaretechnik-Trends 32 (2): 82–83. https://doi.org/10.1007/bf03323491.
  • Xu, L., E. Xu, and L. Li. 2018. “Industry 4.0: State of the Art and Future Trends.” International Journal of Production Research 56 (8): 2941–2962. https://doi.org/10.1080/00207543.2018.1444806.
  • Xu, X., Y. Lu, B. Vogel-Heuser, and L. Wang. 2021. “Industry 4.0 and Industry 5.0—Inception, Conception and Perception.” Journal of Manufacturing Systems 61:530–535. https://doi.org/10.1016/j.jmsy.2021.10.006.
  • Yemenicioglu, E. 2016. “Data Exchange for the Physics-based Simulation of Material Handling Systems in the Digital Factory.” PhD diss., Dissertation, Magdeburg, Universität. https://doi.org/10.25673/4588.
  • Yli-Ojanperä, M., S. Sierla, N. Papakonstantinou, and V. Vyatkin. 2019. “Adapting an Agile Manufacturing Concept to the Reference Architecture Model Industry 4.0: A Survey and Case Study.” Journal of Industrial Information Integration 15:147–160. https://doi.org/10.1016/j.jii.2018.12.002.
  • Zhang, H., Q. Yan, and Z. Wen. 2020. “Information Modeling for Cyber-Physical Production System Based on Digital Twin and AutomationMl.” The International Journal of Advanced Manufacturing Technology 107 (3–4): 1927–1945. https://doi.org/10.1007/s00170-020-05056-9.
  • Zhao, J., E.-H. Aghezzaf, and J. Cottyn. 2023. “A framework for evaluating a generic virtual commissioning data model.” In CIRP Design Conference. Sydney, Australia: Elsevier. https://drive.google.com/file/d/1bvyH_E5YNV3BaT037pgCAO897EeGBt09.
  • Zhao, J., M. Schamp, S. Hoedt, E.-H. Aghezzaf, and J. Cottyn. 2021. “AutomationMl in Industry 4.0 Environment: A Systematic Literature Review.” Advances in Automotive Production Technology–Theory and Application 162–169. https://doi.org/10.1007/978-3-662-62962-8_19.
  • ZVEI. 2022. “Discussion Paper: Electrical Drive Design with the Digital Twin, Standardised Submodel of the Asset Administration Shell.” https://www.zvei.org/fileadmin/user_upload/Presse_und_Medien/Publikationen/2022/Mai/Diskussionspapier_Digital_Engineering/Diskussionspapier_Digital_Engineering_final.pdf.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.