328
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Implementing machine learning in robotic wire arc additive manufacturing for minimizing surface roughness

, , , , &
Received 10 May 2023, Accepted 05 Mar 2024, Published online: 16 Mar 2024

References

  • Brandl, E., V. Michailov, B. Viehweger, and C. Leyens. 2011. “Deposition of Ti-6Al-4V Using Laser and Wire, Part I: Microstructural Properties of Single Beads.” Surface and Coatings Technology 206 (6): 1120–1129. https://doi.org/10.1016/j.surfcoat.2011.07.095.
  • Charles, A., A. Elkaseer, L. Thijs, V. Hagenmeyer, and S. Scholz. 2019. “Effect of Process Parameters on the Generated Surface Roughness of Down-Facing Surfaces in Selective Laser Melting.” Journal of Applied Sciences 9 (6): 1256. https://doi.org/10.3390/app9061256.
  • Chen, T., and C. Guestrin. 2016. “Xgboost: A Scalable Tree Boosting System.” In Proceedings of the 22nd Acm Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, USA, 785–794.
  • Chen, X., F. Kong, Y. Fu, X. Zhao, R. Li, G. Wang, and H. Zhang. 2021. “A Review on Wire-Arc Additive Manufacturing: Typical Defects, Detection Approaches, and Multisensor Data Fusion-Based Model.” The International Journal of Advanced Manufacturing Technology 117 (3–4): 707–727. https://doi.org/10.1007/s00170-021-07807-8.
  • Chiu, W. K., Y. C. Yeung, and K. Ming Yu. 2006. “Toolpath Generation for Layer Manufacturing of Fractal Objects.” Rapid Prototyping Journal 12 (4): 214–221. https://doi.org/10.1108/13552540610682723.
  • Costello, S. C. A., C. R. Cunningham, F. Xu, A. Shokrani, V. Dhokia, and S. T. Newman. 2023. “The State-Of-The-Art of Wire Arc Directed Energy Deposition (WA-DED) As an Additive Manufacturing Process for Large Metallic Component Manufacture.” International Journal of Computer Integrated Manufacturing 36 (3): 469–510. https://doi.org/10.1080/0951192X.2022.2162597.
  • Cunningham, C. R., J. M. Flynn, A. Shokrani, V. Dhokia, and S. T. Newman. 2018. “Invited Review Article: Strategies and Processes for High Quality Wire Arc Additive Manufacturing.” Additive Manufacturing 22 (June): 672–686. https://doi.org/10.1016/j.addma.2018.06.020.
  • DebRoy, T., T. Mukherjee, H. L. Wei, J. W. Elmer, and J. O. Milewski. 2021. “Metallurgy, Mechanistic Models and Machine Learning in Metal Printing.” Nature Reviews Materials 6 (1): 48–68. https://doi.org/10.1038/s41578-020-00236-1.
  • Deng, J., Y. Xu, Z. Zuo, Z. Hou, and S. Chen. 2019. “Bead Geometry Prediction for Multi-Layer and Multi-Bead Wire and Arc Additive Manufacturing Based on XGBoost.” In Transactions on Intelligent Welding Manufacturing: II 4 2018, 125–135. Shanghai, China: Springer.
  • Ding, D., Z. Pan, D. Cuiuri, and H. Li. 2015a. “A Multi-Bead Overlapping Model for Robotic Wire and Arc Additive Manufacturing (WAAM).” Robotics and Computer-Integrated Manufacturing 31:101–110. https://doi.org/10.1016/j.rcim.2014.08.008.
  • Ding, D., Z. Pan, D. Cuiuri, and H. Li. 2015b. “Wire-Feed Additive Manufacturing of Metal Components: Technologies, Developments and Future Interests.” The International Journal of Advanced Manufacturing Technology 81 (1–4): 465–481. https://doi.org/10.1007/s00170-015-7077-3.
  • Dong, X., Z. Yu, W. Cao, Y. Shi, and Q. Ma. 2020. “A Survey on Ensemble Learning.” Frontiers of Computer Science 14 (2): 241–258. https://doi.org/10.1007/s11704-019-8208-z.
  • Dunlavey, M. R. 1983. “Efficient Polygon-Filling Algorithms for Raster Displays.” ACM Transactions on Graphics (TOG) 2 (4): 264–273. https://doi.org/10.1145/245.248.
  • Dwivedi, R., and R. Kovacevic. 2004. “Automated Torch Path Planning Using Polygon Subdivision for Solid Freeform Fabrication Based on Welding.” Journal of Journal of Manufacturing Systems 23 (4): 278–291. https://doi.org/10.1016/S0278-6125(04)80040-2.
  • Farouki, R. T., T. Koenig, K. A. Tarabanis, J. U. Korein, and J. S. Batchelder. 1995. “Path Planning with Offset Curves for Layered Fabrication Processes.” Journal of Manufacturing Systems 14 (5): 355–368. https://doi.org/10.1016/0278-6125(95)98872-4.
  • Frazier, W. E. 2014. “Metal Additive Manufacturing: A Review.” Journal of Materials Engineering and Performance 23 (6): 1917–1928. https://doi.org/10.1007/s11665-014-0958-z.
  • Fu, Y., A. R. J. Downey, L. Yuan, T. Zhang, A. Pratt, and Y. Balogun. 2022. “Machine Learning Algorithms for Defect Detection in Metal Laser-Based Additive Manufacturing: A Review.” Journal of Manufacturing Processes 75 (December 2021): 693–710. https://doi.org/10.1016/j.jmapro.2021.12.061.
  • Guo, S., M. Agarwal, C. Cooper, Q. Tian, R. X. Gao, W. Grace Guo, and Y. B. Guo. 2022. “Machine Learning for Metal Additive Manufacturing: Towards a Physics-Informed Data-Driven Paradigm.” Journal of Manufacturing Systems 62 (November 2021): 145–163. https://doi.org/10.1016/j.jmsy.2021.11.003.
  • Huang, S. H., P. Liu, A. Mokasdar, and L. Hou. 2013. “Additive Manufacturing and Its Societal Impact: A Literature Review.” The International Journal of Advanced Manufacturing Technology 67 (5): 1191–1203. https://doi.org/10.1007/s00170-012-4558-5.
  • Hu, Z., X. Qin, Y. Li, and M. Ni. 2020. “Welding Parameters Prediction for Arbitrary Layer Height in Robotic Wire and Arc Additive Manufacturing.” Journal of Mechanical Science and Technology 34 (4): 1683–1695. https://doi.org/10.1007/s12206-020-0331-0.
  • Investigating the Generation Process of Molten Droplets and Arc Plasma in the Confined Space during Compulsively Constricted WAAM.Pdf. n.d.
  • Jafari, D., T. H. J. Vaneker, and I. Gibson. 2021. “Wire and Arc Additive Manufacturing: Opportunities and Challenges to Control the Quality and Accuracy of Manufactured Parts.” Materials & Design 202:109471. https://doi.org/10.1016/j.matdes.2021.109471.
  • Johnson, N. S., P. S. Vulimiri, A. C. To, X. Zhang, C. A. Brice, B. B. Kappes, and A. P. Stebner. 2020. “Invited Review: Machine Learning for Materials Developments in Metals Additive Manufacturing.” Additive Manufacturing 36:101641. https://doi.org/10.1016/j.addma.2020.101641.
  • Kao, J.-H., and F. B. Prinz. 1998. “Optimal Motion Planning for Deposition in Layered Manufacturing.” In International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Georgia, USA, 80364:V006T06A018. American Society of Mechanical Engineers.
  • Karunakaran, K. P., S. Suryakumar, V. Pushpa, and S. Akula. 2010. “Low Cost Integration of Additive and Subtractive Processes for Hybrid Layered Manufacturing.” Robotics and Computer-Integrated Manufacturing 26 (5): 490–499. https://doi.org/10.1016/j.rcim.2010.03.008.
  • Kshirsagar, R., S. Jones, J. Lawrence, and J. Tabor. 2019. “Prediction of Bead Geometry Using a Two-Stage SVM–ANN Algorithm for Automated Tungsten Inert Gas (TIG) Welds.” Journal of Manufacturing and Materials Processing 3 (2): 39. https://doi.org/10.3390/jmmp3020039.
  • Kulkarni, P., A. Marsan, and D. Dutta. 2000. “A Review of Process Planning Techniques in Layered Manufacturing.” Rapid Prototyping Journal 6 (1): 18–35. https://doi.org/10.1108/13552540010309859.
  • Lee, D.-T. 1982. “Medial Axis Transformation of a Planar Shape.” IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-4 (4): 363–369. https://doi.org/10.1109/TPAMI.1982.4767267.
  • Li, F., S. Chen, J. Shi, H. Tian, and Y. Zhao. 2017. “Evaluation and Optimization of a Hybrid Manufacturing Process Combining Wire Arc Additive Manufacturing with Milling for the Fabrication of Stiffened Panels.” Applied Sciences 7 (12): 1233. https://doi.org/10.3390/app7121233.
  • Li, R., M. Dong, and H. Gao. 2021. “Prediction of Bead Geometry with Changing Welding Speed Using Artificial Neural Network.” Materials 14 (6): 1–9. https://doi.org/10.3390/ma14061494.
  • Li, H., Z. Dong, and G. W. Vickers. 1994. “Optimal Toolpath Pattern Identification for Single Island, Sculptured Part Rough Machining Using Fuzzy Pattern Analysis.” Journal of Computer-Aided Design 26 (11): 787–795. https://doi.org/10.1016/0010-4485(94)90092-2.
  • Liu, W., C. Jia, M. Guo, J. Gao, and C. Wu. 2019. “Compulsively Constricted WAAM with Arc Plasma and Droplets Ejected from a Narrow Space.” Additive Manufacturing 27:109–117. https://doi.org/10.1016/j.addma.2019.03.003.
  • Majeed, A., Y. Zhang, S. Ren, J. Lv, T. Peng, S. Waqar, and E. Yin. 2021. “A Big Data-Driven Framework for Sustainable and Smart Additive Manufacturing.” Robotics and Computer-Integrated Manufacturing 67 (March 2019): 102026. https://doi.org/10.1016/j.rcim.2020.102026.
  • Mehnen, J., J. Ding, H. Lockett, and P. Kazanas. 2011. “Design for Wire and Arc Additive Layer Manufacture.” In Global Product Development: Proceedings of the 20th CIRP Design Conference, Ecole Centrale de Nantes, Nantes, France, 2010, April 19th-21st, pp. 721–727. Springer.
  • Mughal, M. P., H. Fawad, and R. A. Mufti. 2006. “Three-Dimensional Finite-Element Modelling of Deformation in Weld-Based Rapid Prototyping.” Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 220 (6): 875–885. https://doi.org/10.1243/09544062JMES164.
  • Mu, H., J. Polden, Y. Li, F. He, C. Xia, and Z. Pan. 2022. “Layer-By-Layer Model-Based Adaptive Control for Wire Arc Additive Manufacturing of Thin-Wall Structures.” Journal of Intelligent Manufacturing 33 (4): 1165–1180. https://doi.org/10.1007/s10845-022-01920-5.
  • Park, S. C., and B. Kyu Choi. 2000. “Tool-Path Planning for Direction-Parallel Area Milling.” Computer-Aided Design 32 (1): 17–25. https://doi.org/10.1016/S0010-4485(99)00080-9.
  • Rachmatullah, M. I. C., J. Santoso, and K. Surendro. 2021. “Determining the Number of Hidden Layer and Hidden Neuron of Neural Network for Wind Speed Prediction.” PeerJ Computer Science 7:1–19. https://doi.org/10.7717/PEERJ-CS.724.
  • Rajan, V. T., V. Srinivasan, and K. A. Tarabanis. 2001. “The Optimal Zigzag Direction for Filling a Two‐Dimensional Region.” Rapid Prototyping Journal 7 (5): 231–241. https://doi.org/10.1108/13552540110410431.
  • Ren, F., Y. Sun, and D. Guo. 2009. “Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining.” Journal of the International Journal of Advanced Manufacturing Technology 40 (7–8): 760–768. https://doi.org/10.1007/s00170-008-1385-9.
  • Selvi, S., A. Vishvaksenan, and E. Rajasekar. 2018. “Cold Metal Transfer (CMT) Technology - an Overview.” Defence Technology 14 (1): 28–44. https://doi.org/10.1016/j.dt.2017.08.002.
  • Ueyama, T., T. Ohnawa, M. Tanaka, and K. Nakata. 2005. “Effects of Torch Configuration and Welding Current on Weld Bead Formation in High Speed Tandem Pulsed Gas Metal Arc Welding of Steel Sheets.” Science and Technology of Welding and Joining 10 (6): 750–759. https://doi.org/10.1179/174329305X68750.
  • Wang, H., P. Jang, and J. A. Stori. 2005. “A Metric-Based Approach to Two-Dimensional (2D) Tool-Path Optimization for High-Speed Machining.” Journal of Manufacturing Science and Engineering 127 (1): 33–48. https://doi.org/10.1115/1.1830492.
  • Wasser, T., A. Dhar Jayal, and C. Pistor. 1999. “Implementation and Evaluation of Novel Buildstyles in Fused Deposition Modeling (FDM).” In 1999 International Solid Freeform Fabrication Symposium, The University of Texas at Austin, USA.
  • Xia, C., Z. Pan, J. Polden, H. Li, Y. Xu, and S. Chen. 2021. “Modelling and Prediction of Surface Roughness in Wire Arc Additive Manufacturing Using Machine Learning.” Journal of Intelligent Manufacturing 33 (5): 1467–1482. https://doi.org/10.1007/s10845-020-01725-4.
  • Xing, Y., C. Lv, Y. Zhao, Y. Liu, D. Cao, and S. Kawahara. 2020. “Prediction of Deposition Bead Geometry in Wire Arc Additive Manufacturing Using Machine Learning.” Journal of Materials Research and Technology 101541. https://doi.org/10.1016/j.jmrt.2022.08.154.
  • Xiong, J., Y.-J. Li, Z.-Q. Yin, and H. Chen. 2018. “Determination of Surface Roughness in Wire and Arc Additive Manufacturing Based on Laser Vision Sensing.” Chinese Journal of Mechanical Engineering 31 (1): 1–7. https://doi.org/10.1186/s10033-018-0276-8.
  • Yang, Y., J. Y. H. F. Han Tong Loh, and Y. G. Wang. 2002. “Equidistant Path Generation for Improving Scanning Efficiency in Layered Manufacturing.” Journal of Rapid Prototyping Journal 8 (1): 30–37. https://doi.org/10.1108/13552540210413284.
  • Yaseer, A., and H. Chen. 2021. “Machine Learning Based Layer Roughness Modeling in Robotic Additive Manufacturing.” Journal of Manufacturing Processes 70 (September): 543–552. https://doi.org/10.1016/j.jmapro.2021.08.056.
  • Zhang, Y., Y. Chen, P. Li, and A. T. Male. 2003. “Weld Deposition-Based Rapid Prototyping: A Preliminary Study.” Journal of Materials Processing Technology 135 (2–3): 347–357. https://doi.org/10.1016/S0924-0136(02)00867-1.
  • Zhang, Z., Y. Huang, R. Qin, W. Ren, and G. Wen. 2021. “XGBoost-Based On-Line Prediction of Seam Tensile Strength for Al-Li Alloy in Laser Welding: Experiment Study and Modelling.” Journal of Manufacturing Processes 64 (September 2020): 30–44. https://doi.org/10.1016/j.jmapro.2020.12.004.
  • Zhang, Z., Z. Yang, W. Ren, and G. Wen. 2019. “Random Forest-Based Real-Time Defect Detection of Al Alloy in Robotic Arc Welding Using Optical Spectrum.” Journal of Manufacturing Processes 42:51–59. https://doi.org/10.1016/j.jmapro.2019.04.023.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.