2,052
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Isorhamnetin inhibits inflammatory response to alleviate DHEA-induced polycystic ovary syndrome in rats

, , , , &
Article: 2183045 | Received 11 Aug 2022, Accepted 16 Feb 2023, Published online: 26 Feb 2023

References

  • Norman RJ, Dewailly D, Legro RS, et al. Polycystic ovary syndrome. Lancet. 2007;370(9588):1–7.
  • Katsigianni M, Karageorgiou V, Lambrinoudaki I, et al. Maternal polycystic ovarian syndrome in autism spectrum disorder: a systematic review and meta-analysis. Mol Psychiatry. 2019;24(12):1787–1797.
  • Krishnan A, Muthusami S. Hormonal alterations in PCOS and its influence on bone metabolism. J Endocrinol. 2017;232(2):R99–R113.
  • Seow K-M, Chang Y-W, Chen K-H, et al. Molecular mechanisms of laparoscopic ovarian drilling and its therapeutic effects in polycystic ovary syndrome. IJMS. 2020;21(21):8147.
  • Jin P, Xie Y. Treatment strategies for women with polycystic ovary syndrome. Gynecol Endocrinol. 2018;34(4):272–277.
  • Collée J, Mawet M, Tebache L, et al. Polycystic ovarian syndrome and infertility: overview and insights of the putative treatments. Gynecol Endocrinol. 2021;37(10):869–874.
  • Cheng X, He B. Clinical and biochemical potential of antioxidants in treating polycystic ovary syndrome. IJWH. 2022;14:467–479.
  • Lord JM, Flight IHK, Norman RJ. Metformin in polycystic ovary syndrome: systematic review and meta-analysis. BMJ. 2003;327(7421):951–953.
  • Sharpe A, Morley LC, Tang T, et al. Metformin for ovulation induction (excluding gonadotrophins) in women with polycystic ovary syndrome. Cochrane Database Syst Rev. 2019;12(12):CD013505–CD013505.
  • Luo Y, Sun G, Dong X, et al. Isorhamnetin attenuates atherosclerosis by inhibiting macrophage apoptosis via PI3K/AKT activation and HO-1 induction. PLoS ONE. 2015;10(3):e0120259–e0120259.
  • Lu X, Liu T, Chen K, et al. Isorhamnetin: a hepatoprotective flavonoid inhibits apoptosis and autophagy via P38/PPAR-α pathway in mice. Biomed Pharmacother. 2018;103:800–811.
  • Xu Y, Tang C, Tan S, et al. Cardioprotective effect of isorhamnetin against myocardial ischemia reperfusion (I/R) injury in isolated rat heart through attenuation of apoptosis. J Cellular Mol Med. 2020;24(11):6253–6262.
  • Wu Y, Fan L, Wang Y, et al. Isorhamnetin alleviates high glucose-aggravated inflammatory response and apoptosis in oxygen-glucose deprivation and reoxygenation-induced HT22 hippocampal neurons through akt/SIRT1/Nrf2/HO-1 signaling pathway. Inflammation. 2021;44(5):1993–2005.
  • Ren X, Han L, Li Y, et al. Isorhamnetin attenuates TNF-α-induced inflammation, proliferation, and migration in human bronchial epithelial cells via MAPK and NF-κB pathways. Anat Rec (Hoboken). 2021;304(4):901–913.
  • Lu D-F, Yang L-J, Wang F, et al. Inhibitory effect of luteolin on estrogen biosynthesis in human ovarian granulosa cells by suppression of aromatase (CYP19). J Agric Food Chem. 2012;60(34):8411–8418.
  • Li X, Chen H, Zhang Z, et al. Isorhamnetin promotes estrogen biosynthesis and proliferation in porcine granulosa cells via the PI3K/akt signaling pathway. J Agric Food Chem. 2021;69(23):6535–6542.
  • Li T, Zhang T, Gao H, et al. Tempol ameliorates polycystic ovary syndrome through attenuating intestinal oxidative stress and modulating of gut microbiota composition-serum metabolites interaction. Redox Biol. 2021;41:101886–101886.
  • Guo Z, Chen X, Feng P, et al. Short-term rapamycin administration elevated testosterone levels and exacerbated reproductive disorder in dehydroepiandrosterone-induced polycystic ovary syndrome mice. J Ovarian Res. 2021;14(1):64–64.
  • Orisaka M, Hattori K, Fukuda S, et al. Dysregulation of ovarian follicular development in female rat: LH decreases FSH sensitivity during preantral-early antral transition. Endocrinology. 2013;154(8):2870–2880.
  • Lee JJM, Yin C. Effects of glycyrrhizic acid (GA) in glucose and lipid homeostasis in pcos female rats. Open Conf Proceed J. 2013;4:170–170.
  • Li Y, Zheng Q, Sun D, et al. Dehydroepiandrosterone stimulates inflammation and impairs ovarian functions of polycystic ovary syndrome. J Cell Physiol. 2019;234(5):7435–7447.
  • Dumitrescu R, Mehedintu C, Briceag I, et al. The polycystic ovary syndrome: an update on metabolic and hormonal mechanisms. J Med Life. 2015;8(2):142–145.
  • Stener-Victorin E, Holm G, Labrie F, et al. Are there any sensitive and specific sex steroid markers for polycystic ovary syndrome? Obstetric Gynecol Surv. 2010;65(6):383–385.
  • Ashraf S, Nabi M, Rasool SUA, et al. Hyperandrogenism in polycystic ovarian syndrome and role of CYP gene variants: a review. Egypt J Med Hum Genet. 2019;20(1).
  • Yu Y, Cao Y, Huang W, et al. β-Sitosterol ameliorates endometrium receptivity in PCOS-Like mice: the mediation of gut microbiota. Front Nutr. 2021;8:667130–667130.
  • Huang Y, Zhang X. Luteolin alleviates polycystic ovary syndrome in rats by resolving insulin resistance and oxidative stress. Am J Physiol-Endocrinol Metabol. 2021;320(6):E1085–E1092.
  • Kahn SM, Hryb DJ, Nakhla AM, et al. Sex hormone-binding globulin is synthesized in target cells. J Endocrinol. 2002;175(1):113–120.
  • Goldštajn M, Toljan K, Grgić F, et al. Sex hormone binding globulin (SHBG) as a marker of clinical disorders [review]. Coll Antropol. 2016;40(3):211–218.
  • Deswal R, Yadav A, Dang AS. Sex hormone binding globulin – an important biomarker for predicting PCOS risk: a systematic review and meta-analysis. Syst Biol Reproduct Med. 2018;64(1):12–24.
  • Shorakae S, Ranasinha S, Abell S, et al. Inter-related effects of insulin resistance, hyperandrogenism, sympathetic dysfunction and chronic inflammation in PCOS. Clin Endocrinol (Oxf). 2018;89(5):628–633.
  • Urbano F, Chiarito M, Lattanzio C, et al. Sex Hormone-Binding globulin (SHBG) reduction: the alarm bell for the risk of Non-Alcoholic fatty liver disease in adolescents with polycystic ovary syndrome. Children. 2022;9(11):1748.
  • Masjedi F, Keshtgar S, Zal F, et al. Effects of vitamin D on steroidogenesis, reactive oxygen species production, and enzymatic antioxidant defense in human granulosa cells of normal and polycystic ovaries. J Steroid Biochem Mol Biol. 2020;197:105521.
  • Pellicer A, Valbuena D, Bauset C, et al. The follicular endocrine environment in stimulated cycles of women with endometriosis: steroid levels and embryo quality. Fertil Steril. 1998;69(6):1135–1141.
  • Mazloomi S, Sanoeei Farimani M, Tayebinia H, et al. The association of mitochondrial translocator protein and voltage-dependent anion channel-1 in granulosa cells with estradiol levels and presence of immature follicles in polycystic ovary syndrome. J Reprod Infertil. 2022;23(3):148–159.
  • Rojas J, Chávez M, Olivar L, et al. Polycystic ovary syndrome, insulin resistance, and obesity: navigating the pathophysiologic labyrinth [review]. Int J Reprod Med. 2014;2014(10):719050.
  • Broskey NT, Tam CS, Sutton EF, et al. Metabolic inflexibility in women with PCOS is similar to women with type 2 diabetes. Nutr Metab. 2018;15(75):018–0312.
  • Siahaan SCP, Santoso, B, Widjiati. Effectiveness of moringa oleifera leaves on TNF-α expression, insulin levels, glucose levels and follicle count in Rattus norvegicus PCOS model. DMSO. 2022;15:3255–3270.
  • Hussain L, Aamir N, Hussain M, et al. Therapeutic investigation of standardized aqueous methanolic extract of bitter melon (Momordica charantia L.) for its potential against polycystic ovarian syndrome in experimental animals’ model: in vitro and in vivo studies. Evid-Based Complement Alternat Med. 2022;2022:1–14.
  • Abraham Gnanadass S, Divakar Prabhu Y, Valsala Gopalakrishnan A. Association of metabolic and inflammatory markers with polycystic ovarian syndrome (PCOS): an update. Arch Gynecol Obstet. 2021;303(3):631–643.
  • Ebejer K, Calleja-Agius J. The role of cytokines in polycystic ovarian syndrome. Gynecol Endocrinol. 2013;29(6):536–540.
  • Gao L, Gu Y, Yin X. High serum tumor necrosis factor-alpha levels in women with polycystic ovary syndrome: a meta-analysis. PLoS ONE. 2016;11(10):e0164021–e0164021.
  • Peng Z, Sun Y, Lv X, et al. Interleukin-6 levels in women with polycystic ovary syndrome: a systematic review and meta-analysis. PLoS ONE. 2016;11(2):e0148531–e0148531.
  • Jackman RW, Rhoads MG, Cornwell E, et al. Microtubule-mediated NF-κB activation in the TNF-α signaling pathway. Exp Cell Res. 2009;315(19):3242–3249.
  • Oróstica L, Astorga I, Plaza-Parrochia F, et al. Proinflammatory environment and role of TNF-α in endometrial function of obese women having polycystic ovarian syndrome. Int J Obes. 2016;40(11):1715–1722.
  • Oróstica L, García P, Vera C, et al. Effect of TNF-α on molecules related to the insulin action in endometrial cells exposed to hyperandrogenic and hyperinsulinic conditions characteristics of polycystic ovary syndrome. Reprod Sci. 2018;25(7):1000–1009.
  • Khajouei A, Hosseini E, Abdizadeh T, et al. Beneficial effects of minocycline on the ovary of polycystic ovary syndrome mouse model: molecular docking analysis and evaluation of TNF-α, TNFR2, TLR-4 gene expression. J Reprod Immunol. 2021;144:103289.
  • Lang Q, Yidong X, Xueguang Z, et al. ETA-mediated anti-TNF-α therapy ameliorates the phenotype of PCOS model induced by letrozole [research support, Non-U S Gov’t]. PLoS ONE. 2019;14(6):e0217495.
  • Fischer R, Kontermann RE, Pfizenmaier K. Selective targeting of TNF receptors as a novel therapeutic approach [review]. Front Cell Dev Biol. 2020;8:401.
  • Frankel SK, Cosgrove GP, Cha S-I, et al. TNF-α sensitizes normal and fibrotic human lung fibroblasts to fas-induced apoptosis. Am J Respir Cell Mol Biol. 2006;34(3):293–304.
  • Onalan G, Selam B, Baran Y, et al. Serum and follicular fluid levels of soluble fas, soluble fas ligand and apoptosis of luteinized granulosa cells in PCOS patients undergoing IVF [clinical trial randomized controlled trial]. Hum Reprod. 2005;20(9):2391–2395.