129
Views
43
CrossRef citations to date
0
Altmetric
Original

Neuroprotective effects of soy phytoestrogens in the rat brain

, , , &
Pages 63-69 | Received 03 Sep 2005, Accepted 12 Dec 2005, Published online: 26 Aug 2009

References

  • Kuiper G G, Lemmen J G, Carlsson B, Corton J C, Safe S H, van der Saag P T, van der Burg B, Gustafsson J A. Interaction of estrogenic chemicals and phytoestrogens with estrogen receptor β. Endocrinology 1998; 139: 4252–4263
  • Hall J M, Korach K S. Analysis of the molecular mechanisms of human estrogen receptors α and β reveals differential specificity in target promoter regulation by xenoestrogens. J Biol Chem 2002; 277: 44455–444561
  • Patisaul H B, Melby M, Whitten P L, Young L J. Genistein affects ER β- but not ER α-dependent gene expression in the hypothalamus. Endocrinology 2002; 143: 2189–2197
  • Ise R, Han D, Takahashi Y, Terasaka S, Inoue A, Tanji M, Kiyama R. Expression profiling of the estrogen responsive genes in response to phytoestrogens using a customized DNA microarray. FEBS Lett 2005; 579: 1732–1740
  • Schreihofer D A. Transcriptional regulation by phytoestrogens in neuronal cell lines. Mol Cell Endocrinol 2005; 231: 13–22
  • Ososki A L, Kennelly E J. Phytoestrogens: a review of the present state of research. Phytother Res 2003; 17: 845–869
  • Cornwell T, Cohick W, Raskin I. Dietary phytoestrogens and health. Phytochemistry 2004; 65: 995–1016
  • Dixon R A. Phytoestrogens. Annu Rev Plant Biol 2004; 55: 225–261
  • Cotter A, Cashman K D. Genistein appears to prevent early postmenopausal bone loss as effectively as hormone replacement therapy. Nutr Rev 2003; 61: 346–351
  • Fitzpatrick L A. Soy isoflavones: hope or hype?. Maturitas 2003; 44(Suppl 1)S21–S29
  • Altavilla D, Crisafulli A, Marini H, Esposito M, D'Anna R, Corrado F, Bitto A, Squadrito F. Cardiovascular effects of the phytoestrogen genistein. Curr Med Chem Cardiovasc Hematol Agents 2004; 2: 179–186
  • Kumar N, Allen K, Riccardi D, Kazi A, Heine J. Isoflavones in breast cancer chemoprevention: where do we go from here?. Front Biosci 2004; 9: 2927–2934
  • McCue P, Shetty K. Health benefits of soy isoflavonoids and strategies for enhancement: a review. Crit Rev Food Sci Nutr 2004; 44: 361–367
  • Messina M, Ho S, Alekel D L. Skeletal benefits of soy isoflavones: a review of the clinical trial and epidemiologic data. Curr Opin Clin Nutr Metab Care 2004; 7: 649–658
  • Valachovicova T, Slivova V, Sliva D. Cellular and physiological effects of soy flavonoids. Mini Rev Med Chem 2004; 4: 881–887
  • Gallagher J C, Satpathy R, Rafferty K, Haynatzka V. The effect of soy protein isolate on bone metabolism. Menopause 2004; 11: 290–298
  • Huntley A L, Ernst E. Soy for the treatment of perimenopausal symptoms – a systematic review. Maturitas 2004; 47: 1–9
  • Krebs E E, Ensrud K E, MacDonald R, Wilt T J. Phytoestrogens for treatment of menopausal symptoms: a systematic review. Obstet Gynecol 2004; 104: 824–836
  • Pan Y, Anthony M, Clarkson T B. Effect of estradiol and soy phytoestrogens on choline acetyltransferase and nerve growth factor mRNAs in the frontal cortex and hippocampus of female rats. Proc Soc Exp Biol Med 1999; 221: 118–125
  • Lund T D, West T W, Tian L Y, Bu L H, Simmons D L, Setchell K D, Adlercreutz H, Lephart E D. Visual spatial memory is enhanced in female rats (but inhibited in males) by dietary soy phytoestrogens. BMC Neurosci 2001; 2: 20
  • Simon N G, Kaplan J R, Hu S, Register T C, Adams M R. Increased aggressive behavior and decreased affiliative behavior in adult male monkeys after long-term consumption of diets rich in soy protein and isoflavones. Horm Behav 2004; 45: 278–284
  • Lund T D, Lephart E D. Dietary soy phytoestrogens produce anxiolytic effects in the elevated plus-maze. Brain Res 2001; 913: 180–184
  • Shively C A, Mirkes S J, Lu N Z, Henderson J A, Bethea C L. Soy and social stress affect serotonin neurotransmission in primates. Pharmacogenomics J 2003; 3: 114–121
  • Lephart E D, Galindo E, Bu L H. Stress (hypothalamic–pituitary–adrenal axis) and pain response in male rats exposed lifelong to high vs. low phytoestrogen diets. Neurosci Lett 2003; 342: 65–68
  • Linford N J, Dorsa D M. 17β-Estradiol and the phytoestrogen genistein attenuate neuronal apoptosis induced by the endoplasmic reticulum calcium-ATPase inhibitor thapsigargin. Steroids 2002; 67: 1029–1040
  • Ho K P, Li L, Zhao L, Qian Z M. Genistein protects primary cortical neurons from iron-induced lipid peroxidation. Mol Cell Biochem 2003; 247: 219–222
  • Sonee M, Sum T, Wang C, Mukherjee S K. The soy isoflavone, genistein, protects human cortical neuronal cells from oxidative stress. Neurotoxicology 2004; 25: 885–891
  • Zhao L, Chen Q, Diaz Brinton R. Neuroprotective and neurotrophic efficacy of phytoestrogens in cultured hippocampal neurons. Exp Biol Med (Maywood) 2002; 227: 509–519
  • Bang O Y, Hong H S, Kim D H, Kim H, Boo J H, Huh K, Mook-Jung I. Neuroprotective effect of genistein against β amyloid-induced neurotoxicity. Neurobiol Dis 2004; 16: 21–28
  • Zeng H, Chen Q, Zhao B. Genistein ameliorates β-amyloid peptide (25–35)-induced hippocampal neuronal apoptosis. Free Radic Biol Med 2004; 36: 180–188
  • Linford N J, Yang Y, Cook D G, Dorsa D M. Neuronal apoptosis resulting from high doses of the isoflavone genistein: role for calcium and p42/44 mitogen-activated protein kinase. J Pharmacol Exp Ther 2001; 299: 67–75
  • Lee Y B, Lee H J, Won M H, Hwang I K, Kang T C, Lee J Y, Nam S Y, Kim K S, Kim E, Cheon S H, et al. Soy isoflavones improve spatial delayed matching-to-place performance and reduce cholinergic neuron loss in elderly male rats. J Nutr 2004; 134: 1827–1831
  • Trieu V N, Uckun F M. Genistein is neuroprotective in murine models of familial amyotrophic lateral sclerosis and stroke. Biochem Biophys Res Commun 1999; 258: 685–688
  • Choi E J, Lee B H. Evidence for genistein mediated cytotoxicity and apoptosis in rat brain. Life Sci 2004; 75: 499–509
  • Buckmaster P S, Dudek F E. Neuron loss, granule cell axon reorganization, and functional changes in the dentate gyrus of epileptic kainate-treated rats. J Comp Neurol 1997; 385: 385–404
  • Azcoitia I, Sierra A, Garcia-Segura L M. Estradiol prevents kainic acid-induced neuronal loss in the rat dentate gyrus. Neuroreport 1998; 9: 3075–3079
  • Azcoitia I, Fernandez-Galaz C, Sierra A, Garcia-Segura L M. Gonadal hormones affect neuronal vulnerability to excitotoxin-induced degeneration. J Neurocytol 1999; 28: 699–710
  • Azcoitia I, Sierra A, Garcia-Segura L M. Neuroprotective effects of estradiol in the adult rat hippocampus: interaction with insulin-like growth factor-I signalling. J Neurosci Res 1999; 58: 815–822
  • Reibel S, Andre V, Chassagnon S, Andre G, Marescaux C, Nehlig A, Depaulis A. Neuroprotective effects of chronic estradiol benzoate treatment on hippocampal cell loss induced by status epilepticus in the female rat. Neurosci Lett 2000; 281: 79–82
  • Veliskova J, Velisek L, Galanopoulou A S, Sperber E F. Neuroprotective effects of estrogens on hippocampal cells in adult female rats after status epilepticus. Epilepsia 2000; 41(Suppl 6)S30–S35
  • Picazo O, Azcoitia I, Garcia-Segura L M. Neuroprotective and neurotoxic effects of estrogens. Brain Res 2003; 990: 20–27
  • Ciriza I, Carrero P, Azcoitia I, Lundeen S G, Garcia-Segura L M. Selective estrogen receptor modulators protect hippocampal neurons from kainic acid excitotoxicity: differences with the effect of estradiol. J Neurobiol 2004; 61: 209–221
  • Hoffman G E, Moore N, Fiskum G, Murphy A Z. Ovarian steroid modulation of seizure severity and hippocampal cell death after kainic acid treatment. Exp Neurol 2003; 182: 124–134
  • Hatton W J, von Bartheld C S. Analysis of cell death in the trochlear nucleus of the chick embryo: calibration of the optical disector counting method reveals systematic bias. J Comp Neurol 1999; 409: 169–186
  • Dubal D B, Zhu H, Yu J, Rau S W, Shughrue P J, Merchenthaler I, Kindy M S, Wise P M. Estrogen receptor α, not β, is a critical link in estradiol-mediated protection against brain injury. Proc Natl Acad Sci USA 2001; 89: 1952–1957
  • Fitzpatrick J L, Mize A L, Wade C B, Harris J A, Shapiro R A, Dorsa D M. Estrogen-mediated neuroprotection against β-amyloid toxicity requires expression of estrogen receptor α or β and activation of the MAPK pathway. J Neurochem 2002; 82: 674–682
  • Vegeto E, Belcredito S, Etteri S, Ghisletti S, Brusadelli A, Meda C, Krust A, Dupont S, Ciana P, Chambon P, et al. Estrogen receptor-α mediates the brain antiinflammatory activity of estradiol. Proc Natl Acad Sci USA 2003; 100: 9614–9619
  • Carswell H V, Macrae I M, Gallagher L, Harrop E, Horsburgh K J. Neuroprotection by a selective estrogen receptor β agonist in a mouse model of global ischemia. Am J Physiol Heart Circ Physiol 2004; 287: H1501–H1504
  • D'Astous M, Morissette M, Di Paolo T. Effect of estrogen receptor agonists treatment in MPTP mice: evidence of neuroprotection by an ER α agonist. Neuropharmacology 2004; 47: 1180–1188
  • Zhao L, Wu T W, Brinton R D. Estrogen receptor subtypes α and β contribute to neuroprotection and increased Bcl-2 expression in primary hippocampal neurons. Brain Res 2004; 1010: 22–34
  • Azcoitia I, Sierra A, Garcia-Segura L M. Localization of estrogen receptor β-immunoreactivity in astrocytes of the adult rat brain. Glia 1999; 26: 260–267
  • Cardona-Gomez G P, DonCarlos L, Garcia-Segura L M. Insulin-like growth factor I receptors and estrogen receptors colocalize in female rat brain. Neuroscience 2000; 99: 751–760
  • Shughrue P J, Merchenthaler I. Evidence for novel estrogen binding sites in the rat hippocampus. Neuroscience 2000; 99: 605–612
  • Hart S A, Patton J D, Woolley C S. Quantitative analysis of ER α and GAD colocalization in the hippocampus of the adult female rat. J Comp Neurol 2001; 440: 144–155
  • Milner T A, McEwen B S, Hayashi S, Li C J, Reagan L P, Alves S E. Ultrastructural evidence that hippocampal α estrogen receptors are located at extranuclear sites. J Comp Neurol 2001; 429: 355–371
  • Garcia-Ovejero D, Veiga S, Garcia-Segura L M, DonCarlos L L. Glial expression of estrogen and androgen receptors after rat brain injury. J Comp Neurol 2002; 450: 256–271
  • Kalita K, Szymczak S, Kaczmarek L. Non-nuclear estrogen receptor β and α in the hippocampus of male and female rats. Hippocampus 2005; 15: 404–412
  • Simpkins J W, Yang S H, Liu R, Perez E, Cai Z Y, Covey D F, Green P S. Estrogen-like compounds for ischemic neuroprotection. Stroke 2004; 35(11 Suppl 1)2648–2651
  • Akiyama T, Ishida J, Nakagawa S, Ogawara H, Watanabe S, Itoh N, Shibuya M, Fukami Y. Genistein, a specific inhibitor of tyrosine-specific protein kinases. J Biol Chem 1987; 262: 5592–5595
  • Markovits J, Linassier C, Fosse P, Couprie J, Pierre J, Jacquemin-Sablon A, Saucier J M, Le Pecq J B, Larsen A K. Inhibitory effects of the tyrosine kinase inhibitor genistein on mammalian DNA topoisomerase II. Cancer Res 1989; 49: 5111–5117
  • Foti P, Erba D, Riso P, Spadafranca A, Criscuoli F, Testolin G. Comparison between daidzein and genistein antioxidant activity in primary and cancer lymphocytes. Arch Biochem Biophys 2005; 43: 421–427
  • Sweatt J D. The neuronal MAP kinase cascade: a biochemical signal integration system subserving synaptic plasticity and memory. J Neurochem 2001; 76: 1–10
  • Huang R Q, Fang M J, Dillon G H. The tyrosine kinase inhibitor genistein directly inhibits GABAA receptors. Brain Res Mol Brain Res 1999; 67: 177–183

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.