1,811
Views
6
CrossRef citations to date
0
Altmetric
Editorial

Extraembryonic tissues as a source of stem cells

&
Pages 351-355 | Published online: 21 Jul 2009

References

  • Georgiades P, Ferguson-Smith A C, Burton G J. Comparative developmental anatomy of the murine and human definitive placentae. Placenta 2002; 23: 3–19
  • Downs K M, Harmann C. Developmental potency of the murine allantois. Development 1997; 124: 2769–2780
  • Downs K M, Hellman E R, McHugh J, Barrickman K, Inman K E. Investigation into a role for the primitive streak in development of the murine allantois. Development 2004; 131: 37–55
  • Gardner R L, Beddington R S. Multilineage “stem” cells in the mammalian embryo. J Cell Sci Suppl 1988; 10: 11–27
  • Loebel D A, Watson C M, De Young R A, Tam P P. Lineage choice and differentiation in mouse embryos and embryonic stem cells. Dev Biol 2003; 264: 1–14
  • Red-Horse K, Zhou Y, Genbacev O, Prakobphol A, Foulk R, McMaster M, Fisher S J. Trophoblast differentation during embryo implantation and formation of the maternal-fetal interface. J Clin Invest 2004; 114: 744–754
  • Demir R, Kaufmann P, Castellucci M, Erbengi T, Kotowski A. Fetal vasculogenesis and angiogenesis in human placental villi. Acta Ana 1989; 136: 190–203
  • Jauniaux E, Jurkovic D, Campbell S, Hustin J. Doppler ultrasound features of the developing placental circulations: correlation with anatomic findings. Am J Obstet Gynecol 1992; 166: 585–587
  • Pijnenborg R, Dixon G, Robertson W B, Brosens I. Trophoblastic invasion of human decidua from 8 to 18 weeks of pregnancy. Placenta 1980; 1: 3–19
  • Pijnenborg R, Bland J M, Robertson W B, Brosens I. Uteroplacental arterial changes related to interstitial trophoblast migration in early human pregnancy. Placenta 1983; 4: 397–414
  • Hustin J, Schaaps J P. Echographic and anatomic studies of the maternotrophoblastic border during the first trimester of pregnancy. Am J Obstet Gynecol 1987; 157: 162–168
  • Baschat A A, Hecher K. Fetal growth restriction due to placental disease. Semin Perinatol 2004; 28: 67–80
  • Medina-Gomez P, Del Valle M. The culture of amniotic fluid cells: an analysis of the colonies, metaphase and mitotic index for the purpose of ruling out maternal cell contamination. Ginecol Obstet Mex 1988; 56: 122–126
  • In 't Anker P S, Scherjon S A, Kleijburg-van der Keur C, Noort W A, Claas F H, Willemze R, Fibbe W E, Kanhai H H. Amniotic fluid as a novel source of mesenchymal stem cells for therapeutic transplantation. Blood 2003; 102: 1548–1549
  • Prusa A R, Marton E, Rosner M, Bettelheim D, Lubec G, Pollack A, Bernaschek G, Hengstschlager M. Neurogenic cells in human amniotic fluid. Am J Obstet Gynecol 2004; 191: 309–314
  • Miki T, Mitamura K, Ross M A, Stolz D B, Strom S C. Identification of stem cell marker-positive cells by immunofluorescence in term human amnion. J Reprod Immunol 2007; 75: 91–96
  • Till J E, McCulloch E A. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961; 14: 212–222
  • Dancis J, Jansen V, Gorstein F, Douglas G W. Hematopoietic cells in mouse placenta. Am J Obstet Gynecol 1968; 100: 1110–1121
  • Dancis J, Jansen V, Brown G F, Gorstein F, Balis M E. Treatment of hypoplastic anemia in mice with placental transplants. Blood 1977; 50: 663–670
  • Alvarez-Silva M, Belo-Diabangouaya P, Salaun J, Dieterlen-Lievre F. Mouse placenta is a major hematopoietic organ. Development 2003; 130: 5437–5444
  • Cetrulo C L, Cetrulo K J. Placenta and Pregnacy stem cells. Stem Cells Rev 2006; 2: 79–80
  • Zeigler B M, Sugiyama D, Chen M Guo Y, Downs K M, Speck N A. The allantois and chorion, when isolated before circulation or chorio-allantoic fusion, have hematopoietic potential. Development 2006; 133: 4183–4192
  • Pittenger M F, Mackay A M, Beck S C, Jaiswal R K, Douglas R, Mosca J D, Moorman M A, Simonetti D W, Craig S, Marshak D R. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147
  • Van den Heuvel R L, Versele S R, Schoeters G E, Vanderborght O L. Stromal stem cells (CFU-f) in yolk sac, liver, spleen and bone marrowof pre- and postnatal mice. Br J Haematol 1987; 66: 15–20
  • Majumdar M K, Thiede M A, Mosca J D, Moorman M, Gerson S L. Phenotypic and functional comparison of cultures of marrow derived mesenchymal stem cells (MSCs) and stromal cells. J Cell Physiol 1998; 176: 57–66
  • Majumdar M K, Keane-Moore M, Buyaner D, Hardy W B, Moorman M A, McIntosh K R, Mosca J D. Characterization and functionality of cell surface molecules on human mesenchymal stem cells. J Biomed Sci 2003; 10: 228–241
  • Kaviani A, Perry T E, Barnes C M, Oh J T, Ziegler M M, Fishman S J, Fauza D O. The placenta as a cell source in fetal tissue engineering. J Pediatr Surg 2002; 37: 995–999, discussion 995–999
  • Portmann-Lanz C B, Schoeberlein A, Huber A, Sager R, Malek A, Holzgreve W, Surbek D V. Placental mesenchymal stem cells as potential autologous graft for pre- and perinatal neuroregeneration. Am J Obstet Gynecol 2006; 194: 664–673
  • Miao Z, Jin J, Chen L, Zhu J, Huang W, Zhao J, Qian H, Zhang X. Isolation of mesenchymal stem cells from human placenta: comparison with human bone marrow mesenchymal stem cells. Cell Biol Int 2006; 30: 681–687
  • Zhang X, Nakaoka T, Nishishita T, Watanabe N, Igura K, Shinomiya K, Takahashi T A, Yamashita N. Efficient adeno-associated virus-mediated gene expression in human placenta-derived mesenchymal cells. Microbiol Immunol 2003; 47: 109–116
  • Yen B L, Huang H I, Chien C C, Jui H Y, Ko B S, Yao M, Shun C T, Yen M L, Lee M C, Chen Y C. Isolation of amniotic stem cell lines with potential for therapy. Stem Cells 2005; 23: 3–9
  • Prusa A R, Hengstschlager M. Amniotic fluid cells and human stem cell research: a new connection. Med Sci Monit 2002; 8: 253–257
  • Prusa A R, Marton E, Rosner M, Bernaschek G, Hengstschlager M. Oct4 expressing Cells in human amniotic fluid: A new source for stem cell research?. Hum Reprod 2003; 18: 1489–1493
  • Torricelli F, Brizzi L, Bernabei P A, Gheri G, Di Lollo S, Nutini L, Lisi E, Di Tommaso M, Cariati E. Identification of hematopoietic progenitor cells in human amniotic fluid before the 12th week of gestation. Ital J Anat Embryol 1993; 98: 119–126
  • Miki T, Lehmann T, Cai H, Stolz D, Strom S. Stem cell characteristics of amniotic epithelial cells. Stem Cells 2005; 23: 1549–1559
  • Jiang Y, Jahagirdar B N, Reinhardt R L, Schwartz R E, Keene C D, Ortiz-Gonzalez X R, Reyes M, Lenvik T, Lund T, Blackstad M, et al. Pluripotente of mesenchymal stem cells derived from adult marrow. Nature 2002; 418: 41–49
  • Tamagawa T, Ishiwata I, Saito S. Establishment and characterization of a pluripotent stem cell line derived from human amniotic membranes and initiation of germ layers in vitro. Hum Cell 2004; 17: 125–130
  • Hori J, Wang M, Kamiya K, Takahashi H, Sakuragawa N. Immunological characteristics of amniotic epithelium. Cornea 2006; 25: 53–58
  • Sakuragawa N, Enosawa S, Ishii T, Thangavl R, Tashiro T, Okuyama T, Suzuki S. Human amniotic epithelial cells are promising transgene carriers for allogeneic cell transplantation into liver. J Hum Genet 2000; 45: 171–176
  • Takashima S, Ise H, Zhao P, Akaike T, Nikaido T. Human amniotic epithelial cells possess hepatocyte-like characteristics and functions. Cell Struct Funct 2004; 29: 73–84
  • Wei J P, Zhang T S, Kawa S, Aiawa T, Ota M, Akaike T, Kato K, Konishi I, Nikaido T. Human amnion-isolated cells normalize blood glucose in streptozotocin-induced diabetic mice. Cell Transplant 2003; 12: 545–552
  • Takahashi T, Lord B, Schulze P C, Fryer R M, Sarang S S, Gullans S R, Lee R T. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 2003; 107: 1912–1916
  • Moro L, Venturino M, Bozzo C, Silengo L, Altruda F, Beguinot L, Tarone G, Defilippi P. Integrins induce activation of EGF receptor: role in MAP kinase induction and adhesion-dependent cell survival. EMBO J 1998; 17: 6622–6632
  • Schlaepfer D D, Hunter T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol Cell Biol 1996; 16: 5623–5633
  • Dua H S, Gomes J A, King A J, Maharajan V S. The amniotic membrane in ophthalmology. Surv Ophthalmol 2004; 49: 51–77
  • Gomes J A, Romano A, Santos M S, Dua H S. Amniotic membrane use in ophthalmology. Curr Opin Ophthalmol 2005; 16: 233–240
  • De Coppi P, Bartsch G, Jr, Siddiqui M M, Xu T, Santos C C, Perin L, Mostoslavsky G, Serre A C, Snyder E Y, Yoo J J, et al. Isolation of amniotic stem cell lines with potential for therapy. Nat Biotechnol 2007; 25: 100–106
  • Kolambkar Y M, Peister A, Soker S, Atala A, Guldberg R E. Chondrogenic differentiation of amniotic fluid-derived stem cells. J Mol Histol 2007; 38: 405–413
  • Perin L, Giuliani S, Jin D, Sedrakyan S, Carraro G, Habibian R, Warburton D, Atala A, De Filippo R E. Renal differentiation of amniotic fluid stem cells. Cell Prolif 2007; 40: 936–948
  • Carraro G, Perin L, Sedrakyan S, Giuliani S, Tiozzo C, Lee J, Turcatel G, De Langhe S P, Driscoll B, Bellusci S, et al. Human amniotic fluid stem cells can integrate and differentiate into epithelial lung lineages. Stem Cells 2008; 26: 2902–2911

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.