328
Views
5
CrossRef citations to date
0
Altmetric
Original Articles

An integrated system for interactive continuous learning of categorical knowledge

, , , , , , , , , , & show all
Pages 823-848 | Received 29 Nov 2014, Accepted 18 Jul 2015, Published online: 05 Feb 2016

References

  • Baranes, A., & Oudeyer, P.-Y. (2009). R-IAC: Robust intrinsically motivated exploration and active learning. IEEE TAMD, 1, 155–169.
  • Bauckhage, C., Fink, G., Fritsch, J., Kummmert, F., Lomker, F., & Sagerer, G. (2001). An integrated system for cooperative man-machine interaction. IEEE International Symposium on Computational Intelligence in Robotics and Automation (pp. 320–325). Banff, Alberta.
  • Belpaeme, T., & Morse, A. (2012). Word and category learning in a continuous semantic domain: Comparing cross-situational and interactive learning. Advances in Complex Systems, 15, 1250031-1–1250031-13.
  • Billard, A., & Hayes, G. M. (1999). Drama, a connectionist architecture for control and learning in autonomous robots. Adaptive Behavior, 7, 35–63.
  • Bolder, B., Brandl, H., Heracles, M., Janssen, H., Mikhailova, I., & Schmudderich, J. (2008). Expectation-driven autonomous learning and interaction system. 8th IEEE-RAS International Conference on Humanoids 2008 (pp. 553–560). Daejeon, South Korea,
  • Bonasso, R. P., Firby, R. J., Gat, E., Kortenkamp, D., Miller, D. P., & Slack, M. G. (1997). Experiences with an architecture for intelligent, reactive agents. Journal of Experimental and Theoretical Artificial Intelligence, 9, 237–256.
  • Boykov, Y., Veksler, O., & Zabih, R. (2001). Fast approximate energy minimization via graph cuts. IEEE PAMI, 23, 1222–1239.
  • Bratman, M. (1987). Intentions, plans, and practical reason. Cambridge, MA: Harvard University Press.
  • Brenner, M., & Nebel, B. (2009). Continual planning and acting in dynamic multiagent environments. JAAMAS, 19, 297–331.
  • Briggs, G., & Scheutz, M. (2012). Multi-modal belief updates in multi-robot human-robot dialogue interactions. Linguistic and cognitive approaches to dialogue agents (p. 67). Birmingham.
  • Cakmak, M., DePalma, N., Arriaga, R. I., & Thomaz, A. L. (2010). Exploiting social partners in robot learning. Autonomous Robots, 29, 309–329.
  • Chernova, S., & Veloso, M. (2009). Interactive policy learning through confidence-based autonomy. JAIR, 34, 1–25.
  • Cohen, P. R., & Levesque, H. J. (1990). Intention is choice with commitment. Artificial Intelligence, 42, 213–261.
  • de Greeff, J., Delaunay, F., & Belpaeme, T. (2009, June). Human-robot interaction in concept acquisition: A computational model. International Conference on Development and Learning, ICDL 2009 (pp. 1–6), Shanghai.
  • Deits, R., Tellex, S., Thaker, P., Simeonov, D., Kollar, T., & Roy, N. (2013). Clarifying commands with information-theoretic human-robot dialog. Journal of Human-Robot Interaction, 2, 58–79.
  • Domingos, P. (2007). Toward knowledge-rich data mining. Data Mining and Knowledge Discovery, 15, 21–28.
  • Erman, L. D., Hayes-Roth, F., Lesser, V. R., & Reddy, D. R. (1980). The hearsay-ii speech-understanding system: Integrating knowledge to resolve uncertainty. ACM Computing Surveys (CSUR), 12, 213–253.
  • Fann, K. T. (1970). Peirce’s theory of abduction. The Hague, The Netherlands: Mouton.
  • Fong, T., Nourbakhsh, I., & Dautenhahn, K. (2003). A survey of socially interactive robots. Robotics and Autonomous Systems, 42, 143–166.
  • Hanheide, M., Gretton, C., Dearden, R., Hawes, N., Wyatt, J., Pronobis, A., … Zender, H. (2011). Exploiting probabilistic knowledge under uncertain sensing for efficient robot behaviour. Proceedings of IJCAI 2011, Barcelona.
  • Hawes, N. (2011). A survey of motivation frameworks for intelligent systems. Artificial Intelligence, 175, 1020–1036.
  • Hawes, N., Sloman, A., Wyatt, J., Zillich, M., Jacobsson, H., Kruijff, G. J., … Skocaj, D. (2007). Towards an integrated robot with multiple cognitive functions. AAAI (pp. 1548-1553). Vancouver, British Columbia.
  • Hawes, N., & Wyatt, J. (2010). Engineering intelligent information-processing systems with CAST. Advanced Engineering Informatics, 24, 27–39.
  • Hawes, N., Wyatt, J. L., Sridharan, M., Jacobsson, H., Dearden, R., Sloman, A., & Kruijff, G. J. M. (2010). Architecture and representations. In H. I.Christensen, G. J. M.Kruijff, & J. L.Wyatt (Eds.), Cognitive systems monographs (Vol. 8, pp. 51–93). Berlin Heidelberg: Springer.
  • Hawes, N., Wyatt, J. L., Sridharan, M., Kopicki, M., Hongeng, S., Calvert, I., … Zillich, M. (2010). The playmate system. In H. I. Christensen, G. J. M. Kruijff, & J. L. Wyatt (Eds.), Cognitive systems monographs (pp. 367–393). Springer.
  • Helmert, M. (2006). The fast downward planning system. Journal of Artificial Intelligence Research, 26, 191–246.
  • Hobbs, J. R., Stickel, M. E., Appelt, D. E., & Martin, P. A. (1993). Interpretation as abduction. Artificial Intelligence, 63, 69–142.
  • Janíček, M. (2012). Abductive reasoning for continual dialogue understanding. In M. Slavkovik, & D. Lassiter (Eds.), New directions in logic, language, and computation (pp. 16–31). Berlin Heidelberg: Springer.
  • Karaoguz, C., Rodemann, T., Wrede, B., & Goerick, C. (2012). Learning information acquisition for multi-tasking scenarios in dynamic environments (p. 1). IEEE TAMD: PP.
  • Kirstein, S., Denecke, A., Hasler, S., Wersing, H., Gross, H.-M., & Körner, E. (2009). A vision architecture for unconstrained and incremental learning of multiple categories. Memetic Computing, 1, 291–304.
  • Kopicki, M. (2010). Prediction learning in robotic manipulation ( PhD thesis). University of Birmingham.
  • Kristan, M. & Leonardis, A. (2013). Online discriminative kernel density estimator with gaussian kernels. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 44, 355–365.
  • Kristan, M., Skočaj, D., & Leonardis, A. (2010). Online Kernel Density Estimation for interactive learning. Image and Vision Computing, 28, 1106–1116.
  • Kristan, M., Skočaj, D., & Leonardis, A. (2010). Principles of discovering gaps in categorical knowledge, Technical Report TR-LUVSS-03/10. Faculty of Compuer and Information Science: University of Ljubljana.
  • Laird, J. E., Newell, A., & Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence. Artificial intelligence, 33, 1–64.
  • Lallee, S., Pattacini, U., Lemaignan, S., Lenz, A., Melhuish, C., Natale, L., … Dominey, P. (2012). Towards a platform-independent cooperative human robot interaction system: III an architecture for learning and executing actions and shared plans. IEEE TAMD, 4, 239–253.
  • Lowe, D. G. (2004). Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision, 60, 91–110.
  • Lutkebohle, I., Peltason, J., Schillingmann, L., Wrede, B., Wachsmuth, S., Elbrechter, C., et al. (2009). The curious robot-structuring interactive robot learning. Proceedings of ICRA 2009 (p. 4156-4162). Kobe.
  • Malfaz, M., Castro-Gonzalez, A., Barber, R., & Salichs, M. (2011). A biologically inspired architecture for an autonomous and social robot. IEEE TAMD, 3, 232–246.
  • Mason, M. & Lopes, M. (2011, March). Robot self-initiative and personalization by learning through repeated interactions. 6th International Conference on Human-Robot Interaction (HRI) (p. 433–440). Lausanne, Switzerland.
  • Meger, D., Forssén, P.-E., Lai, K., Helmer, S., McCann, S., Southey, T., Baumann, M., Little, J. J., & Lowe, D. G. (2008). Curious george: An attentive semantic robot. Robotics and Autonomous Systems, 56, 503–511.
  • Merrick, K. E. (2012). Intrinsic motivation and introspection in reinforcement learning. IEEE TAMD, 4, 315–329.
  • Otero, N., Saunders, J., Dautenhahn, K., & Nehaniv, C. L. (2008). Teaching robot companions: The role of scaffolding and event structuring. Connection Science, 20, 111–134.
  • Oudeyer, P.-Y., Kaplan, F., & Hafner, V. (2007). Intrinsic motivation systems for autonomous mental development. IEEE Transactions on Evolutionary Computation, 11, 265–286.
  • Perera, I., & Allen, J. F. (2013). SALL-E: Situated agent for language learning. AAAI Conference on Artificial Intelligence (pp. 1241-1247). Washington, DC.
  • Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks. Artificial Intelligence, 64, 81–129.
  • Richardson, M., & Domingos, P. (2006). Markov logic networks. Machine Learning, 62, 107–136.
  • Roy, D. K. & Pentland, A. P. (2002). Learning words from sights and sounds: A computational model. Cognitive Science, 26, 113–146.
  • Salti, S., Tombari, F., & Di Stefano, L. (2014). SHOT: Unique signatures of histograms for surface and texture description. Computer Vision and Image Understanding, 125, 251–264.
  • Salvi, G., Montesano, L., Bernardino, A., & Santos-Victor, J. (2012). Language bootstrapping: Learning word meanings from perception-action association. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42, 660–671.
  • Schiebener, D., Morimoto, J., Asfour, T., & Ude, A. (2013). Integrating visual perception and manipulation for autonomous learning of object representations. Adaptive Behavior - Animals, Animats, Software Agents, Robots, Adaptive Systems, 21, 328–345.
  • Schmidhuber, J. (1991). Curious model-building control systems. 1991 IEEE International Joint Conference on Neural Networks (pp. 1458–1463). IEEE, Singapore.
  • Sequeira, P., Melo, F. S., & Paiva, A. (2014). Learning by appraising: An emotion-based approach to intrinsic reward design. Adaptive Behavior, 22, 330–349.
  • Steels, L. & Kaplan, F. (2000). AIBO’s first words, the social learning of language and meaning. Evolution of Communication, 4, 3–32.
  • Stickel, M. E. (1991). A Prolog-like inference system for computing minimum-cost abductive explanations in natural-language interpretation. Annals of Mathematics and Artificial Intelligence, 4, 89–105.
  • Stone, M. & Thomason, R.H. (2003). Coordinating understanding and generation in an abductive approach to interpretation. Proceedings of DIABRUCK 2003. Saarbrücken, Germany.
  • Sun, R. (2007). The importance of cognitive architectures: An analysis based on CLARION. Journal of Experimental & Theoretical Artificial Intelligence, 19, 159–193.
  • Tellex, S., Thaker, P., Deits, R., Kollar, T. & Roy, N. (2012, July). Toward information theoretic human-robot dialog. Proceedings of Robotics: Science and Systems. Sydney, Australia,
  • Tellex, S., Thaker, P., Joseph, J., & Roy, N. (2014). Learning perceptually grounded word meanings from unaligned parallel data. Machine Learning, 94, 151–167.
  • Thomaz, A. L. & Breazeal, C. (2008). Experiments in socially guided exploration: Lessons learned in building robots that learn with and without human teachers. Connection Science, 20, 91–110.
  • Thomaz, A.L. (2008b). Teachable robots: Understanding human teaching behavior to build more effective robot learners. Artificial Intelligence, 172, 716–737.
  • Vrečko, A., Janíček, M., Leonardis, A., & Skočaj, D. (2012). Associating and merging multi-modal and multi-agent information in a cognitive system, Technical Report TR-LUVSS-02/2012. Faculty of Compuer and Information Science: University of Ljubljana.
  • Vrečko, A., Leonardis, A., & Skočaj, D. (2012). Modeling binding and cross-modal learning in markov logic networks. Neurocomputing, 96, 29–36.
  • Wohlkinger, W., Buchaca, A. A., Rusu, R. & Vincze, M. (2012). 3DNet: Large-scale object class recognition from CAD models. Proceedings of ICRA 2012. St. Paul, MN.
  • Wyatt, J. L., Aydemir, A., Brenner, M., Hanheide, M., Hawes, N., Jensfelt, P., Kristan, M., Kruijff, G.-J. M., Lison, P., Pronobis, A., Sjöö, K., Vrečko, A., Zender, H., Zillich, M., & Skočaj, D. (2010). Self-understanding and self-extension: A systems and representational approach. IEEE TAMD, 2, 282–303.
  • Zhou, K., Richtsfeld, A., Zillich, M. & Vincze, M. (2011). Coherent spatial abstraction and stereo line detection for robotic visual attention. Proceedings of IROS 2011. San Francisco, CA.
  • Zhou, K., Varadarajan, K. M., Zillich, M. & Vincze, M. (2011, December). Web mining driven semantic scene understanding and object localization. IEEE International Conference on Robotics and Biomimetics (ROBIO). Phuket, Thailand.
  • Zillich, M., Prankl, J., Mörwald, T. & Vincze, M. (2011). Knowing your limits – Self-evaluation and prediction in object recognition. Proceedings of IROS 2011. San Francisco, CA.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.