437
Views
24
CrossRef citations to date
0
Altmetric
Original Article

Cloud-Fog based framework for drought prediction and forecasting using artificial neural network and genetic algorithm

&
Pages 273-289 | Received 13 Dec 2018, Accepted 11 Jul 2019, Published online: 09 Aug 2019

References

  • Ali, M., Deo, R. C., Downs, N. J., & Maraseni, T. (2018). Multi-stage committee based extreme learning machine model incorporating the influence of climate parameters and seasonality on drought forecasting. Computers and Electronics in Agriculture, 152, 149–165.
  • Bayissa, Y., Maskey, S., Tadesse, T., Andel, S. J. V., Moges, S., Griensven, A. V., & Solomatine, D. (2018). Comparison of the performance of six drought Ã-ndices in characterizing historical drought for the upper blue Nile Basin, Ethiopia. Geosciences, 8(3), 81.
  • Cong, D., Zhao, S., Chen, C., & Duan, Z. (2017). Characterization of droughts during 2001“2014 based on remote sensing: A case study of Northeast China. Ecological Informatics, 39, 56–67.
  • Demisse, G. B., Tadesse, T., Atnafu, S., Hill, S., Wardlow, B. D., Bayissa, Y., & Shiferaw, A. (2017). Information mining from hetrogeneous data sources: A case study on drought predictions. Information, 8(3), 79.
  • Du, K., Sun, Z., Zheng, F., Chu, J., & Ma, J. (2017). Monitoring system for wheat meteorological disasters using wireless sensor networks. American Society of Agricultural and Biological Engineers (ASABE). ASABE Annual International Meeting, Washington.
  • Fang, S., Xu, L. D., Zhu, Y., Ahati, J., Pei, H., Yan, J., & Liu, Z. (2014). An integrated system for regional environmental monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics, 10(2), 1596–1605.
  • Food and Agriculture Organization (2017). Assessing damage and loss from disasters in agriculture– FAO. 29 Nov, 2018. [online]. Available: https://www.unece.org/fileadmin/DAM/stats/documents/ece/ces/ge.33/2017/mtg3/5_4_Assessing_Damage.pdf.
  • Hao, Z., Hao, F., Singh, V. P., Ouyang, W., & Cheng, H. (2017). An integrated package for drought monitoring, prediction and analysis to aid drought modeling and assessment. Environmental Modelling & Software, 91, 199–209.
  • Jang, D. (2018). Assessment of meteorological drought indices in Korea using RCP 8.5 scenario. Water, 10(3), 283.
  • Jiang, B., Wang, P., Zhuang, S., Li, M., Li, Z., & Gong, Z. (2018). Detection of maize drought based on texture and morphological features. Computers and Electronics in Agriculture, 151, 50–60.
  • Kantarci, B., & Mouftah, H. T. (2014). Trustworthy sensing for public safety in cloud-centric internet of things. IEEE Internet of Things Journal, 1(4), 360–368.
  • Maca, P., & Pech, P. (2016). Forecasting SPEI and SPI drought indices using the integrated artificial neural networks. Computational Intelligence and Neuroscience, 14.
  • Masinde, M. (2018). An innovative drought early warning system for sub-Saharan Africa: Integrating modern and indigenous approaches. African Journal of Science, Technology, Innovation and Development, 7(1), 825.
  • McKee, T. B., Doesken, N. J., & Kleist, J., (1993). The relationship of drought frequency and duration to time scales. In Proceeding of the 8th Conference on Applied Climatology, American meteorological society: Boston, 179 ‘ 184.
  • Mishra, A. K., & Singh, V. P. (2010). A review of drought concepts. Journal of Hydrology, 391(2), 202–216.
  • Monacelli, G., Galluccio, M. C., & Abbafati, M. (2005). Drought assessment and forecasting. Drought within the Context of the Region VI.
  • National Drought Mitigation Center. United States Drought Monitor. 1 May, 2018. [online]. Available: https://droughtmonitor.unl.edu/Data/DataDownload.aspx.
  • NOAA’s National Climatic Data Center (NCDC). Drought Indices and Data. Last Accessed on 1 May, 2018. [online]. Available:https://www.ncdc.noaa.gov/temp-and-precip/drought/nadm/indices.
  • NOAA’s National Climatic Data Center (NCDC). Divisional Time Series Data. 1 May, 2019. [online]. Available: https://www.ncdc.noaa.gov/cag/divisional/time-series.
  • Noori, R., Karbassi, A., Khakpour, A., Shahbazbegian, M., Badam, H. K. B., & Vesali-Naseh, M. (2012). Chemometric analysis of surface water quality data: case study of the gorganrud river basin, Iran. Environmental Modelling and Assessment, 17, 411–420.
  • Noori, R., Karbassi, A., Mehdizadeh, H., Vesali-Naseh, M., & Sabahi, M. S. (2011). A framework development for predicting the longitudinal dispersion coefficient in natural streams using an artificial neural network. Environmental Progress & Sustainable Energy, 30(3), 439–449.
  • Noori, R.,Sabahi, M. S., Karbassi, R., Baghvand, A., Zadeh, H. T. (2010). Multivariate sta-tistical analysis of surface water quality based on correlations and variations in the data set.Desalination 260, 129-136.
  • Noori, R., Sabahi, M. S., Karbassi, R., Baghvand, A., & Zadeh, H. T. (2010). Multivariate statistical analysis of surface water quality based on correlations and variations in the data set. Desalination, 260, 129–136.
  • Odabas, M. S., Leelaruban, N., Simsek, H., & Padmanabhan, G. (2014). Quantifying impact of droughts on barley yield in North Dakota, USA using multiple linear regression and artificial neural network. Neural Network World, 24(4), 343.
  • Palmer, W. C. (1965). Meteorological Drought. I Research Paper No. 45. U.S. Department of Commerce Weather Bureau: Washington, DC.
  • Severino, G., DUrso, G., Scarfato, M., & Toraldo, G. (2018). The IoT as a tool to combine the scheduling of the irrigation with the geostatistics of the soils. Future Generation Computer Systems, 82, 268–273.
  • Soh, Y. W., Kooh, H., Huang, F., & Fung, F. (2018). Application of artificial intelligence models for the prediction of standardized precipitation evapotranspiration index (SPEI) at Langat river basin, Malaysia. Computers and Electronics in Agriculture, 144, 164–173.
  • Sood, S. K., & Mahajan, I. (2018). A fog-based healthcare framework for chikungunya. IEEE Internet of Things Journal, 5(2), 749–801.
  • Sood, S. K., Sandhu, R., Singla, K., & Chang, V. (2017). IoT, big data and HPC based smart flood management framework. Sustainable Computing: Informatics and Systems, 20, 102–117.
  • Suciu, G., Suciu, V., Martian, A., Craciunescu, R., Vulpe, A., Marcu, I., … Fratu, O. (2015). Bigdata, internet of things and cloud convergencean architecture for secure e-health applications. Journal of Medical Systems, 39(11), 141.
  • Texas A&M GeoServices. TAMU Soil Moisture Data. Last Accessed on. 1 May, 2019. [online]. Available: http://soilmoisture.tamu.edu/Data/Download.aspx.
  • Texas Water Development Board. TWDB Groundwater Database. 1 May, 2019. [online]. Available: https://waterdatafortexas.org/groundwater/download.
  • United Nations Office for Disaster Risk Reduction (2015). The human cost of weather related disasters 1995–2015 – UNISDR. 29 Nov, 2018. [online]. Available: https://www.unisdr.org/2015/docs/climatechange COP21_WeatherDisastersReport_2015_FINAL.pdf
  • United States Geological Survey. Average streamflow Database. 1 May, 2019. [online]. Available:https://waterwatch.usgs.gov/index.php?id=ww.
  • Vathsala, H., & Koolagudi, S. G. (2017). Prediction model for peninsular Indian summer monsoon rainfall using data mining and statistical approaches. Computers & Geosciences, 98, 55–63.
  • Wang, C., Bi, S. Z., & Xu, L. D. (2014). IoT and cloud computing in automation of assembly modeling systems. IEEE Transactions on Industrial Informatics, 10(2), 1426–1434.
  • Yu, J., Lim, J., & Lee, K. (2018). Investigation of drought-vulnerable regions in North Korea using remote sensing and cloud computing climate data. Environmental Monitoring and Assessment, 190(3), 126.
  • Zou, Q., Li, G., & Yu, W. (2018). MapReduce functions to remote sensing distributed data processing Global vegetation drought monitoring as example. Software: Practice and Experience, 48(7), 1352–1367.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.