356
Views
15
CrossRef citations to date
0
Altmetric
Research Article

A description logic framework for commonsense conceptual combination integrating typicality, probabilities and cognitive heuristics

ORCID Icon & ORCID Icon
Pages 769-804 | Received 21 Feb 2019, Accepted 29 Aug 2019, Published online: 22 Nov 2019

References

  • Aerts, D., Gabora, L., & Sozzo, S. (2013). Concepts and their dynamics: A quantum-theoretic modeling of human thought. Topics in Cognitive Science, 5(4), 737–772.
  • Baader, F., Calvanese, D., McGuinness, D., Patel-Schneider, P., & Nardi, D. (2003). The description logic handbook: Theory, implementation and applications. Cambridge, UK: Cambridge university press.
  • Baader, F., & Hollunder, B. (1995a). Embedding defaults into terminological knowledge representation formalisms. Journal of Automated Reasoning (JAR), 14(1), 149–180.
  • Baader, F., & Hollunder, B. (1995b). Priorities on defaults with prerequisites, and their application in treating specificity in terminological default logic. Journal of Automated Reasoning (JAR), 15(1), 41–68.
  • Benferhat, S., & Bouraoui, Z. (2017). Min-based possibilistic dl-lite. Journal of Logic and Computation, 27(1), 261–297.
  • Boden, M. A. (1998). Creativity and artificial intelligence. Artificial Intelligence, 103(1–2), 347–356.
  • Bonatti, P. A., Faella, M., Petrova, I., & Sauro, L. (2015). A new semantics for overriding in description logics. Artificial Intelligence, 222, 1–48.
  • Bonatti, P. A., Lutz, C., & Wolter, F. (2009). The complexity of circumscription in DLs. Journal of Artificial Intelligence Research (JAIR), 35, 717–773.
  • Casini, G., & Straccia, U. (2010). Rational closure for defeasible description logics. In T. Janhunen & I. Niemelä (Eds.), Logics in Artificial Intelligence - Proceedings of the12th European Conference (JELIA 2010), Volume 6341 of Lecture Notes in Computer Science (LNCS) (pp. 77–90). Helsinki: Springer.
  • Casini, G., & Straccia, U. (2013). Defeasible inheritance-based description logics. Journal of Artificial Intelligence Research (JAIR), 48, 415–473.
  • Colton, S., Wiggins, G. A. (2012). Computational creativity: The final frontier?. In De Raedt, L., Bessiere, C., Dubois, D., Doherty, P., Frasconi, P., Heintz, F., & Lucas, P., (Eds.), Ecai (Vol. 12, pp. 21–26). Montpelier.
  • Confalonieri, R., Schorlemmer, M., Kutz, O., Peñaloza, R., Plaza, E., & Eppe, M. (2016). Conceptual blending in EL++. In M. Lenzerini & R. Peñaloza (Eds.), Proceedings of the 29th International Workshop on Description Logics, Cape Town, South Africa, April 22–25, 2016., volume 1577 of CEUR Workshop Proceedings. Retrieved from CEUR-WS.org
  • Donini, F. M., Nardi, D., & Rosati, R. (2002a). Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logics (tocl), 3(2), 177–225.
  • Donini, F. M., Nardi, D., & Rosati, R. (2002b). Description logics of minimal knowledge and negation as failure. ACM Transactions on Computational Logics (TOCL), 3(2), 177–225.
  • Dubois, D., & Prade, H. (1997). The three semantics of fuzzy sets. Fuzzy Sets and Systems, 90(2), 141–150.
  • Eppe, M., Maclean, E., Confalonieri, R., Kutz, O., Schorlemmer, M., Plaza, E., & Kühnberger, K.-U. (2018). A computational framework for conceptual blending. Artificial Intelligence, 256, 105–129.
  • Fodor, J. A. (1981). The Present Status of the Innateness Controversy.  Cambridge: MIT Press.
  • Franks, B. (1995). Sense generation: A “quasi-classical” approach to concepts and concept combination. Cognitive Science, 19(4), 441–505.
  • Frixione, M., & Lieto, A. (2011). Representing and reasoning on typicality in formal ontologies. Proceedings of the 7th International Conference on Semantic Systems (pp. 119–125). Graz, Austria: ACM.
  • Gangemi, A., Alam, M., & Presutti, V. (2018, September 19–21). Amnestic forgery: An ontology of conceptual metaphors. Formal Ontology in Information Systems - Proceedings of the 10th International Conference, FOIS 2018 (pp. 159–172). Cape Town, South Africa.
  • Gärdenfors, P. (1998). Concept combination: A geometrical model. Lund University.
  • Gärdenfors, P. (2004). Conceptual spaces: The geometry of thought. Boston: MIT press.
  • Gärdenfors, P. (2014). The geometry of meaning: Semantics based on conceptual spaces. Boston: MIT Press.
  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2009). ALC+T: A preferential extension of description logics. Fundamenta Informaticae, 96, 341–372.
  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2013a). A nonmonotonic description logic for reasoning about typicality. Artificial Intelligence, 195, 165–202.
  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2013b). Minimal model semantics and rational closure in description logics. In T. Eiter, B. Glimm, Y. Kazakov, & M. Krötzsch (Eds.), Informal Proceedings of the 26th International Workshop on Description Logics, Ulm, Germany, July 23–26, 2013, Volume 1014 of CEUR Workshop Proceedings (pp. 168–180). Retrieved from CEUR-WS.org.
  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2014). Rational closure in SHIQ. DL 2014, 27th International Workshop on Description Logics, Volume 1193 of CEUR Workshop Proceedings (pp. 543–555). Retrieved from CEUR-WS.org
  • Giordano, L., Gliozzi, V., Olivetti, N., & Pozzato, G. L. (2015). Semantic characterization of rational closure: From propositional logic to description logics. Artificial Intelligence, 226, 1–33.
  • Giordano, L., Gliozzi, V., Pozzato, G. L., & Renzulli, R. (2017). An efficient reasoner for description logics of typicality and rational closure. In A. Artale, B. Glimm, & R. Kontchakov (Eds.), Proceedings of the 30th International Workshop on Description Logics, Montpellier, France, July 18–21, 2017, Volume 1879 of CEUR Workshop Proceedings. Retrieved from CEUR-WS.org
  • Gleitman, L., Connolly, A. C., & Armstrong, S. L. (2012). Oxford handbook of compositionality. In Wolfram H., Edouard M., & Markus W. (Eds.), Can prototype representations support composition and decomposition (pp. 418–436).
  • Hampton, J. A. (1987). Inheritance of attributes in natural concept conjunctions. Memory & Cognition, 15(1), 55–71.
  • Hampton, J. A. (1988). Overextension of conjunctive concepts: Evidence for a unitary model of concept typicality and class inclusion. Journal of Experimental Psychology: Learning, Memory, and Cognition, 14(1), 12.
  • Hampton, J. A. (2000). Concepts and prototypes. Mind & Language, 15(2–3), 299–307.
  • Hampton, J. A. (2011). Concepts and fuzzy logic. In Radim B., & George J. K., (Eds.), Conceptual combinations and fuzzy logic (pp. 209). Boston.
  • Hampton, J. A. (2017). Compositionality and concepts. In Hampton, J., A., & Winter, Y., (Eds.), Compositionality and concepts in linguistics and psychology (pp. 95–121). Cham: Springer.
  • Huebscher, M. C., & McCann, J. A. (2008). A survey of autonomic computing—Degrees, models, and applications. ACM Computing Surveys (CSUR), 40(3), 7.
  • Kamp, H., & Partee, B. (1995). Prototype theory and compositionality. Cognition, 57(2), 129–191.
  • Lawry, J., & Tang, Y. (2009). Uncertainty modelling for vague concepts: A prototype theory approach. Artificial Intelligence, 173(18), 1539–1558.
  • Lehmann, D., & Magidor, M. (1992). What does a conditional knowledge base entail? Artificial Intelligence, 55(1), 1–60.
  • Lehmann, D. J. (1995). Another perspective on default reasoning. Annals of Mathematics and Artificial Intelligence, 15(1), 61–82.
  • Lewis, M., & Lawry, J. (2016). Hierarchical conceptual spaces for concept combination. Artificial Intelligence, 237, 204–227.
  • Lieto, A., Lebiere, C., & Oltramari, A. (2018). The knowledge level in cognitive architectures: Current limitations and possible developments. Cognitive Systems Research, 48, 39–55.
  • Lieto, A., & Pozzato, G. L. (2018). A description logic of typicality for conceptual combination. Proceedings of the 24th International Symposium on Methodologies for Intelligent Systems ISMIS2018. Limassol.
  • Lieto, A., & Pozzato, G. L. (2019). Applying a description logic of typicality as a generative tool for concept combination in computational creativity. Intelligenza Artificiale 13(1): 93–106. ( to appear).
  • Lieto, A., Radicioni, D. P., & Rho, V. (2015). A common-sense conceptual categorization system integrating heterogeneous proxytypes and the dual process of reasoning. Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI) (pp. 875–881).Buenos Aires: AAAI Press.
  • Lieto, A., Radicioni, D. P., & Rho, V. (2017). Dual PECCS: A cognitive system for conceptual representation and categorization. Journal of Experimental & Theoretical Artificial Intelligence, 29(2), 433–452.
  • Lukasiewicz, T. (2008). Expressive probabilistic description logics. Artificial Intelligence, 172(6–7), 852–883.
  • Lukasiewicz, T., & Straccia, U. (2009). Description logic programs under probabilistic uncertainty and fuzzy vagueness. International Journal of Approximate Reasoning, 50(6), 837–853.
  • Mitchell, J., & Lapata, M. (2010). Composition in distributional models of semantics. Cognitive Science, 34(8), 1388–1429.
  • Montague, R. (1973). The proper treatment of quantification in ordinary english. In Hintikka K. J. J., Moravcsik J. M. E., & Suppes P., (Eds.), Approaches to natural language (pp. 221–242). Boston: Springer.
  • Murphy, G. (2002). The big book of concepts. Boston: MIT press.
  • Nagai, Y., & Taura, T. (2006). Formal description of concept-synthesizing process for creative design. Design Computing and Cognition, 443–460.
  • Osherson, D. N., & Smith, E. E. (1981). On the adequacy of prototype theory as a theory of concepts. Cognition, 9(1), 35–58.
  • Pelletier, F. J. (2017). Compositionality and concepts—A perspective from formal semantics and philosophy of language (pp. 31–94). Cham: Springer International Publishing.
  • Pozzato, G. L. (2017a). Reasoning about plausible scenarios in description logics of typicality. Intelligenza Artificiale, 11(1), 25–45.
  • Pozzato, G. L. (2017b). Reasoning in description logics with typicalities and probabilities of exceptions. A. In Antonucci, L. Cholvy, & O. Papini (Eds.), Symbolic and Quantitative Approaches to Reasoning with Uncertainty - 14th European Conference, ECSQARU 2017, Lugano, Switzer- land, July 10–14, 2017, Proceedings, Volume 10369 of Lecture Notes in Computer Science (pp. 409–420). Lugano, Switzerland: Springer.
  • Prinz, J. (2012). Regaining composure: A defense of prototype compositionality. In Oxford Handbooks Online, (Ed.), The Oxford handbook of compositionality (pp. 437–453).
  • Riguzzi, F., Bellodi, E., Lamma, E., & Zese, R. (2015a). Probabilistic description logics under the distribution semantics. Semantic Web, 6(5), 477–501.
  • Riguzzi, F., Bellodi, E., Lamma, E., & Zese, R. (2015b, July 25–31). Reasoning with probabilistic ontologies. In Q. Yang & M. Wooldridge (Eds.), Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015 (pp. 4310–4316). Buenos Aires, Argentina: AAAI Press.
  • Rosch, E. (1975). Cognitive representations of semantic categories. Journal of Experimental Psychology: General, 104(3), 192.
  • Sato, T. (1995). A statistical learning method for logic programs with distribution semantics. In L. Sterling (Eds.), Logic Programming, Proceedings of the 12th International Conference on Logic Programming (pp. 715–729). Tokyo: MIT Press.
  • Smith, E. E., & Osherson, D. N. (1984). Conceptual combination with prototype concepts. Cognitive Science, 8(4), 337–361.
  • Smith, E. E., Osherson, D. N., Rips, L. J., & Keane, M. (1988). Combining prototypes: A selective modification model. Cognitive Science, 12(4), 485–527.
  • Tversky, A., & Kahneman, D. (1983). Extensional versus intuitive reasoning: The conjunction fallacy in probability judgment. Psychological Review, 90(4), 293.
  • Zadeh, L. A. (1975). The concept of a linguistic variable and its application to approximate reasoning—I. Information Sciences, 8(3), 199–249.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.