66
Views
2
CrossRef citations to date
0
Altmetric
Research Article

High-performance attribute reduction on graphics processing unit

&
Pages 977-996 | Received 18 Apr 2019, Accepted 26 Dec 2019, Published online: 18 Jan 2020

References

  • Chen, H., Li, T., Ruan, D., Lin, J., & Hu, C. (2013). A rough-set-based incremental approach for updating approximations under dynamic maintenance environments. IEEE Transactions on Knowledge and Data Engineering, 25(2), 274–284.
  • David, K., & Hwu, W. M. (2010). Programming massively parallel processors: A hand-on approach. San Francisco, USA: Morgan Kaufmann Publishers.
  • Dean, J., & Ghemawat, S. (2008). Mapreduce: Simplified data processing on large clusters. Communications of the ACM, 51(1), 107–113.
  • Deng, D. Y., Yan, D. X., Wang, J. Y. (2010). Parallel reducts based on attribute significance. In J. Yu, S. Greco, & P. Lingras (Eds.), Lecture notes in computer science (Vol. 6401, pp. 336–343). Berlin, Germany: Springer.
  • Harris, M., Sengupta, S., & Owens, J. D. (2007). Parallel prefix sum (scan) with CUDA. In H. Nguyen (Ed.), GPU gems 3 0(pp. 851-876). Boston, MA: Addison Wesley.
  • Hu, Q., Mi, J., & Chen, D. (2016). Granular computing based machine learning in the era of big data: Editorial. Information Sciences, 378, 242–243.
  • Hu, Q., Xie, Z., & Yu, D. (2007). Hybrid attribute reduction based on a novel fuzzy-rough model and information granulation. Pattern Recognition, 40(12), 3509–3521.
  • Hu, Q., Yu, D., Liu, J., & Wu, C. (2008). Neighborhood rough set based heterogeneous feature subset selection. Information Sciences, 178(18), 3577–3594.
  • Jing, S. Y. (2014). A hybrid genetic algorithm for feature subset selection in rough set theory. Soft Computing, 18(7), 1373–1382.
  • Jing, S. Y., Ali, S., She, K., & Zhong, Y. (2013). State-of-the-art research study for green cloud computing. The Journal of Supercomputing, 65(1), 445–468.
  • Jing, S. Y., Li, G. L., Zeng, K., Pan, W., & Liu, C. M. (2018). Efficient parallel algorithm for computing rough set approximation on GPU. Soft Computing, 22(22), 7553–7569.
  • Jing, Y., Li, T., Huang, J., & Zhang, Y. (2016). An incremental attribute reduction approach based on knowledge granularity under the attribute generalization. International Journal of Approximate Reasoning, 76, 80–95.
  • Li, J. Y., Wang, X., Wu, W. Z., & Xu, Y. H. (2017). Attribute reduction in inconsistent formal decision contexts based on congruence relations. International Journal Of Machine Learning and Cybernetics, 8(1), 1-14. doi:10.1007/s13042-016-0586-z
  • Liang, J., Wang, F., Dang, C., & Qian, Y. (2012). An efficient rough feature selection algorithm with a multi-granulation view. International Journal of Approximate Reasoning, 53, 912–926.
  • Lindholm, E., Nickolls, J., & Oberman, S. (2008). Nvidia tesla: A unified graphics and computing architecture. IEEE Micro, 28(2), 39–55.
  • Min, F., Zhang, Z., & Dong, J. (2018). Ant colony optimization with partial-complete searching for attribute reduction. Journal of Computational Science, 25, 170–182.
  • Pawlak, Z. (1991). Rough sets, theoretical aspects of reasoning about data. Netherlands, Dordrecht: Kluwer Academic Publishers.
  • Qian, J., Miao, D., & Zhang, Z. (2011). Knowledge reduction algorithms in cloud computing. Chinese Journal of Computers, 34(12), 2332–2342.
  • Qian, J., Miao, D., Zhang, Z., & Yue, X. (2014). Parallel attribute reduction algorithms using MapReduce. Information Sciences, 279, 671–690.
  • Qian, Y., Liang, J., Pedrycz, W., & Dang, C. (2010). Positive approximation: An accelerator for attribute reduction in rough set theory. Artificial Intelligence, 174(9–10), 597–618.
  • Qian, Y., Liang, X., Wang, Q., Liang, J., Liu, B., Skowron, A., … Dang, C. (2018). Local rough set: A solution to rough data analysis in big data. International Journal of Approximate Reasoning, 97, 38–63.
  • Qian, Y., Zhang, H., Sang, Y., & Liang, J. (2017). Multigranulation decision-theoretic rough sets. International Journal of Approximate Reasoning, 82, 119–137.
  • Ryoo, S., Rodrigues, C. I., Baghsorkhi, S. S., Stone, S. S., Kirk, D. B., & Hwu, W. W. (2008, February). Optimization principles and application performance evaluation of a multi-threaded GPU using CUDA. Proceedings of the 13th ACM SIGPLAN symposium on Principles and practice of parallel programming, Salt Lake City, UT. New York, NY: ACM.
  • Satish, N., Harris, M., & Garland, M. (2009, May). Designing efficient sorting algorithms for manycore GPUs Proceedings of the 2009 IEEE international symposium on parallel & distributed processing, Rome, Italy. Piscataway, USA: IEEE.
  • Susmaga, R. (2004). Tree-like parallelization of reduct and construct computation. In S. Tsumoto, et al. (Ed.), RSCTC 2004 (pp. 455–464). Berlin, Germany: Springer.
  • Tsang, E. C. C., Chen, D. G., Yeung, D. S., Wang, X. Z., & Lee, J. (2008). Attributes reduction using fuzzy rough sets. IEEE Transactions on Fuzzy Systems, 16(5), 1130–1141.
  • UCI Repository. Retrieved from http://www.ics.uci.edu/mlearn/MLRepository.html
  • Wang, C., He, Q., Shao, M., & Hu, Q. (2017a). Feature selection based on maximal neighborhood discernibility. International Journal of Machine Learning and Cybernetics, 9(12), 1–12.
  • Wu, W. Z., Leung, Y., & Mi, J. S. (2009). Granular computing and knowledge reduction in formal context. IEEE Transactions on Knowledge and Data Engineering, 21(10), 1461–1474.
  • Xu, J., Miao, D., Zhang, Y., & Zhang, Z. (2017). A three-way decisions model with probabilistic rough sets for stream computing. International Journal of Approximate Reasoning, 88, 1–22.
  • Xu, Z., Liu, Z., Yang, B., & Song, W. (2006). A quick attribute reduction algorithm with complexity of max(O|C||U|, O|C|2|U/C|). Chinese Journal of Computers, 29(3), 391–399.
  • Yao, Y. Y. (2018). Three-way decision and granular computing. International Journal of Approximate Reasoning, 103, 107–123.
  • Yao, Y. Y., Wang, S., & Deng, X. F. (2017). Constructing shadowed sets and three-way approximations of fuzzy sets. Information Sciences, 412–413, 132–153.
  • Zeng, K. (2016). Preference mining using neighborhood rough set model on two universes. Computational Intelligence and Neuroscience, 2016, 1–13.
  • Zeng, K., & Jing, S. Y. (2018). Kernel neighborhood rough sets model and its application. Complexity, 1342562, 1–8.
  • Zhang, H. R., & Min, F. (2017). Regression-based three-way recommendation. Information Sciences, 378, 444–461.
  • Zhang, J., Li, T., Ruan, D., Gao, Z., & Zhao, C. (2012). A parallel method for computing rough set approximations. Information Sciences, 194, 209–223.
  • Zhang, J., Zhu, Y., Pan, Y., & Li, T. (2015). Efficient parallel boolean matrix based algorithms for computing composite rough set approximations. Information Sciences, 329, 287–302.
  • Zhang, J., Zhu, Y., Pan, Y., & Li, T. (2016). Efficient parallel boolean matrix based algorithms for computing composite rough set approximations. Information Sciences, 329, 287-302. doi:10.1016/j.ins.2015.09.022
  • Zhang, Q., Xie, Q., & Wang, G. (2018). A Novel Three-way decision model with decision-theoretic rough sets using utility theory. Knowledge-Based Systems, 159, 321–335.
  • Zhu, W. (2007a). Topological approaches to covering rough sets. Information Sciences, 177(6), 1499–1508.
  • Zhu, W. (2007b). Generalized rough sets based on relations. Information Sciences, 177(22), 4997–5011.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.