125
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Ancillary mechanism for autonomous decision-making process in asymmetric confrontation: a view from Gomoku

ORCID Icon &
Pages 1141-1159 | Received 07 Mar 2021, Accepted 06 Apr 2022, Published online: 02 May 2022

References

  • Banerjee, B., & Peng, J. (2012). Strategic best-response learning in multiagent systems. Journal of Experimental & Theoretical Artificial Intelligence, 24(2), 139–160. https://doi.org/10.1080/13623079.2011.571819
  • Barrett, J. A., Cochran, C. T., Huttegger, S., & Fujiwara, N. (2017). Hybrid learning in signalling games. Journal of Experimental & Theoretical Artificial Intelligence, 29(5), 1119–1127. https://doi.org/10.1080/0952813X.2017.1309693
  • Ben-Assayag, S., & El-Yaniv, R. (2021). Train on small, play the large: Scaling up board games with alphazero and gnn. arXiv preprint arXiv:2107.08387.
  • Bhattacharyya, R., & Hazarika, S. (2020). A knowledge-driven layered inverse reinforcement learning approach for recognizing human intents. Journal of Experimental & Theoretical Artificial Intelligence, 32(6), 1015–1044. https://doi.org/10.1080/0952813X.2020.1718773
  • Browne, C. B., Powley, E., Whitehouse, D., Lucas, S. M., Cowling, P. I., Rohlfshagen, P., Tavener, S., Perez, D., Samothrakis, S., & Colton, S. (2012). A survey of monte carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in Games, 4(1), 1–43. https://doi.org/10.1109/TCIAIG.2012.2186810
  • Coulom, R. (2006). Efficient selectivity and backup operators in monte-carlo tree search. In International conference on computers and games, 72–83. Berlin, Heidelberg: Springer.
  • De Winter, G. (2018). Ai personalities: Clues from animal research. Journal of Experimental & Theoretical Artificial Intelligence, 30(5), 547–559 https://doi.org/10.1080/0952813X.2018.1430861.
  • Esposito, G., & Mart´ın, M. (2016). Approximate policy iteration using regularised bellman residuals minimisation. Journal of Experimental & Theoretical Artificial Intelligence, 28(1–2), 351–367. https://doi.org/10.1080/0952813X.2015.1024494
  • Garc´ıa, J., Majadas, R., & Fernandez, F. (2020). Learning adversarial attack policies through multi-objective reinforcement learning. Engineering Applications of Artificial Intelligence, 96 , 104021. https://doi.org/10.1016/j.engappai.2020.104021
  • Goodfellow, I., Bengio, Y., Courville, A., & Bengio, Y. (2016). Deep learning (vol. 1, no. 2). MIT Press. Retrieved December, 21:2020.
  • Guarini, M. (2009). Computational theories of mind, and fodor’s analysis of neural network behaviour. Journal of Experimental & Theoretical Artificial Intelligence, 21(2), 137–153. https://doi.org/10.1080/09528130902723674
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016a). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition, Las Vegas, Nevada, USA, 770–778.
  • He, K., Zhang, X., Ren, S., & Sun, J. (2016b). Identity mappings in deep residual networks. In European conference on computer vision, Amsterdam, The Netherlands, 630–645. : Springer.
  • Karigiannis, J. N., & Tzafestas, C. S. (2016). Model-free learning on robot kinematic chains using a nested multi-agent topology. Journal of Experimental & Theoretical Artificial Intelligence, 28(6), 913–954. https://doi.org/10.1080/0952813X.2015.1042923
  • Lawrence, S., Giles, C. L., Tsoi, A. C., & Back, A. D. (1997). Face recognition: A convolutional neural-network approach. IEEE Transactions on Neural Networks, 8(1), 98–113. https://doi.org/10.1109/72.554195
  • Li, Y., Fang, Y., & Akhtar, Z. (2020). Accelerating deep reinforcement learning model for game strategy. Neurocomputing, 408 , 157–168 . https://doi.org/10.1016/j.neucom.2019.06.110
  • Li, X., He, S., Wu, L., Chen, D., & Zhao, Y. (2019). A game model for gomoku based on deep learning and monte carlo tree search. In Chinese Intelligent Automation Conference, Singapore, 88–97. Springer.
  • Mnih, V., Badia, A. P., Mirza, M., Graves, A., Lillicrap, T., Harley, T., Silver, D., & Kavukcuoglu, K. (2016). Asynchronous methods for deep reinforcement learning. In International conference on machine learning, New York, New York, USA, 1928–1937. PMLR.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & Riedmiller, M. (2013). Playing Atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.
  • Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., Graves, A., Riedmiller, M., Fidjeland, A. K., Ostrovski, G., Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., King, H., Kumaran, D., Wierstra, D., Legg, S., & Hassabis, D. (2015). Human-level control through deep reinforcement learning. nature, 518(7540), 529–533. https://doi.org/10.1038/nature14236
  • Perez, D., Samothrakis, S., & Lucas, S. (2014). Knowledge-based fast evolutionary mcts for general video game playing. In 2014 IEEE Conference on Computational Intelligence and Games, Dortmund, Germany, 1–8. IEEE.
  • Rakhmatulin, I. (2021). Neural network for automatic farm control. Journal of Experimental & Theoretical Artificial Intelligence, 33(1), 147–160. https://doi.org/10.1080/0952813X.2020.1725653
  • Ranjitha, M., Nathan, K., & Joseph, L. (2020). Artificial intelligence algorithms and techniques in the computation of player-adaptive games. In Journal of Physics: Conference Series, Bangalore, Karnataka, India, volume 1427, 012006. IOP Publishing.
  • Santos, J. M., & Touzet, C. (1999). Dynamic update of the reinforcement function during learning. Connection Science, 11(3–4), 267–289. https://doi.org/10.1080/095400999116250
  • Sarma, S. K. (2021). Hybrid optimised deep learning-deep belief network for attack detection in the internet of things. Journal of Experimental & Theoretical Artificial Intelligence, 1–30. https://doi.org/10.1080/0952813X.2021.1924868
  • Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural Networks: The Official Journal of the International Neural Network Society, 61, 85–117. https://doi.org/10.1016/j.neunet.2014.09.003
  • Shahamiri, S. R. (2021). Neural network-based multi-view enhanced multi-learner active learning: Theory and experiments. Journal of Experimental & Theoretical Artificial Intelligence, 1–21. https://doi.org/10.1080/0952813X.2021.1948921
  • Shao, K., Zhao, D., Tang, Z., & Zhu, Y. (2016). Move prediction in gomoku using deep learning. In 2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC), Wuhan, China, 292–297. IEEE.
  • Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V., Lanctot, M., Dieleman, S., Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, T., Hassabis, D. (2016). Mastering the game of go with deep neural networks and tree search. nature, 529(7587), 484–489. https://doi.org/10.1038/nature16961
  • Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot, M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D. (2017a). Mastering chess and shogi by self-play with a general reinforcement learning algorithm 2017a . arXiv preprint arXiv:1712.01815.
  • Silver, D., Schrittwieser, J., Simonyan, K., Antonoglou, I., Huang, A., Guez, A., Hubert, T., Baker, L., Lai, M., Bolton, A., Chen, Y., Lillicrap, T., Hui, F., Sifre, L., van den Driessche, G., Graepel, T., & Hassabis, D. (2017b). Mastering the game of go without human knowledge. nature, 550(7676), 354–359. https://doi.org/10.1038/nature24270
  • Soemers, D. J., Mella, V., Piette, E., Stephenson, M., Browne, C., & Teytaud, O. (2021). Transfer of fully convolutional policy-value networks between games and game variants. arXiv preprint arXiv:2102.12375.
  • Srivastava, A., & Yang, L. (2020). A reimplementation of alphago-zero on a game of gomoku.
  • Sutton, R. S., & Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.
  • van Eck, N. J., & van Wezel, M. (2008). Application of reinforcement learning to the game of othello. Computers & Operations Research, 35(6), 1999–2017. https://doi.org/10.1016/j.cor.2006.10.004
  • Vinyals, O., Babuschkin, I., Czarnecki, W. M., Mathieu, M., Dudzik, A., Chung, J., Choi, D. H., Powell, R., Ewalds, T., Georgiev, P., Oh, J., Horgan, D., Kroiss, M., Danihelka, I., Huang, A., Sifre, L., Cai, T., Agapiou, J. P., Jaderberg, M., … Silver, D. (2019). Grandmaster level in starcraft ii using multi-agent reinforcement learning. Nature, 575(7782), 350–354. https://doi.org/10.1038/s41586-019-1724-z
  • Von Stackelberg, H. (2010). Market structure and equilibrium. Springer Science & Business Media.
  • Vylala, A., & Plakkottu Radhakrishnan, B. (2020). Spectral feature and optimization-based actor-critic neural network for arrhythmia classification using ECG signal. Journal of Experimental & Theoretical Artificial Intelligence, 32(3), 409–435. https://doi.org/10.1080/0952813X.2019.1652355
  • Yan, P., & Feng, Y. (2018a). A hybrid gomoku deep learning artificial intelligence. In Proceedings of the 2018 Artificial Intelligence and Cloud Computing Conference, New York, NY, USA, Association for Computing Machinery, 48–52.
  • Yan, P., & Feng, Y. (2018b). Using convolution and deep learning in gomoku game artificial intelligence. Modern Physics Letters A, 28(3), 1850011 https://doi.org/10.1142/S0129626418500111.
  • Zhang, R. (2016). Convolutional and recurrent neural network for gomoku.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.