64
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Positive almost periodicity on a n-species food chain system incorporating time-varying delays and polluted environments

ORCID Icon
Pages 121-145 | Received 21 Jul 2021, Accepted 14 May 2022, Published online: 05 Jun 2022

References

  • Ahmad, S., & Stamov, G. (2009). Almost periodic solutions of N-dimensional impulsive competitive systems. Nonlinear Analysis: Real World Applications, 10(3), 1846–1853. https://doi.org/10.1016/j.nonrwa.2008.02.020
  • Al-Islam, N. S., Alsulami, S. M., & Diagana, T. (2012). Existence of weighted pseudo anti-periodic solutions to some non-autonomous differential equations. Applied Mathematics and Computation, 218(11), 6536–6548. https://doi.org/10.1016/j.amc.2011.12.026
  • Cao, Q., Wang, G., Zhang, H., & Gong, S. (2020). New results on global asymptotic stability for a nonlinear density-dependent mortality Nicholson’s blowflies model with multiple pairs of time-varying delays. Journal of Inequalities and Applications, 2020(1), 1–12. https://doi.org/10.1186/s13660-019-2277-2
  • Chen, J., Li, X., & Mao, Z. (2021). Stability analysis of delayed food chain systems with heterogeneous free parameters. Journal of the Franklin Institute, 358(9), 4883–4894. https://doi.org/10.1016/j.jfranklin.2021.04.003
  • Cong, P., Fan, M., & Zou, X. (2021). Dynamics of a three-species food chain model with fear effect. Communications in Nonlinear Science and Numerical Simulation, 99(2), 105809. https://doi.org/10.1016/j.cnsns.2021.105809
  • De Luna, J. T., & Hallam, T. G. (1987). Effects of toxicants on population: A qualitative approach IV. Resource-consumer-toxicants models. Ecological Modelling, 35(3–4), 249–273. https://doi.org/10.1016/0304-3800(87)90115-3
  • Diagana, T. (2006). Weighted pseudo almost periodic functions and applications. Comptes Rendus Mathematique, 343(10), 643–646. https://doi.org/10.1016/j.crma.2006.10.008
  • Ding, D., Fang, K., & Zhao, Y. (2015). Mathematical analysis for a discrete predator-prey model with time delay and Holling II functional response. Discrete Dynamics in Nature and Society 2015(1) , 1–8. https://doi.org/10.1155/2015/797542
  • Duan, L., Fang, X., & Huang, C. (2017). Global exponential convergence in a delayed almost periodic Nicholson’s blowflies model with discontinuous harvesting. Mathematical Methods in the Applied Sciences, 41(5), 1954–1965. https://doi.org/10.1002/mma.4722
  • Duan, L., Huang, L., Guo, Z., & Fang, X. (2017). Periodic attractor for reaction-diffusion high-order Hopfield neural networks with time-varying delays. Computers & Mathematics with Applications, 73(2), 233–245. https://doi.org/10.1016/j.camwa.2016.11.010
  • Dubey, B. (1997). Modelling the effect of toxicant on forestry resources. Indian Journal of Pure and Applied Mathematics, 28(1), 1–12.
  • Fink, A. M. (1974). Almost periodic differential equations 337 (Berlin and New York: Springer Verlag) . https://doi.org/10.1007/BFb0070324
  • Freedman, H. I., & Shukla, J. B. (1991). Models for the effect of toxicant in a single-species and predator-prey systems. Journal of Mathematical Biology, 30(1), 15–30. https://doi.org/10.1007/BF00168004
  • Gao, S., & Chen, L. (2005). The effect of seasonal harvesting on a single-species discrete population model with stage structure and birth pulses. Chaos, Solitons & Fractals, 24(4), 1013–1023. https://doi.org/10.1016/j.chaos.2004.09.091
  • Gao, S., & Li, Y. (2008). Positive periodic solutions for a predator-prey model with time delays and impulsive effect. Electronic Journal of Differential Equations, 88 2008(88) , 313–326. https://doi.org/10.1080/14689360802423530
  • Gong, S., & Han, M. (2020). Limit cycle bifurcations in a planar piecewise quadratic system with multiple parameters. Advances in Difference Equations, 2020(1), 1–16. https://doi.org/10.1186/s13662-020-02827-2
  • Gragnani, A., De Feo, O., & Rinaldi, S. (1998). Food chains in the chemostat: Relationships between mean yield and complex dynamics. Bulletin of Mathematical Biology, 60(4), 703–719. https://doi.org/10.1006/bulm.1997.0039
  • Hale, J. K., & Verduyn Lunel, S. M. (1993). Introduction to functional differential equations. Springer-Verlag. https://doi.org/10.1007/978-1-4612-4342-7
  • Hallam, T. G., Clark, C. E., & Jordan, G. S. (1983a). Effects of toxicant on population: A qualitative approach II, First order kinetics. Journal of Mathematical Biology, 18(1), 25–37. https://doi.org/10.1007/BF00275908
  • Hallam, T. G., Clark, C. E., & Lassider, R. R. (1983b). Effects of toxicant on population: A qualitative approach I. Equilibrium Environmental Exposure. Ecological Modelling, 18(3–4), 291–304. https://doi.org/10.1016/0304-3800(83)90019-4
  • Hass, C. N. (1981). Application of predator-prey models to disinfection. Journal Water Pollution Control Federation, 53(3), 378–386. https://www.jstor.org/stable/25041087
  • Hastings, A., & Powell, T. (1991). Chaos in a three-species food chain. Ecology, 72(3), 896–903. https://doi.org/10.2307/1940591
  • He, M., & Chen, F. (2009). Dynamic behaviors of the impulsive periodic multi-species predatorprey system. Computers & Mathematics with Applications, 57(2), 248–265. https://doi.org/10.1016/j.camwa.2008.09.041
  • Hou, J., Teng, Z., & Gao, S. (2010). Permanence and global stability for nonautonomous N-species Lotka-Volterra competitive system with impulses. Nonlinear Analysis: Real World Applications, 11(3), 1882–1896. https://doi.org/10.1016/j.nonrwa.2009.04.012
  • Hsu, S. B., & Waltman, P. (1998). Competition in the chemostat when one competitor produces a toxin. Japan Journal of Industrial and Applied Mathematics, 15(3), 471–490. https://doi.org/10.1007/BF03167323
  • Hu, D., & Zhang, Z. (2010). Four positive periodic solutions to a Lotka-Volterra cooperative system with harvesting terms. Nonlinear Analysis: Real World Applications, 11(2), 1115–1121. https://doi.org/10.1016/j.nonrwa.2009.04.012
  • Huang, C., Liu, B., Tian, X., Yang, L., & Zhang, X. (2018). Global convergence on asymptotically almost periodic SICNNs with nonlinear decay functions. Neural Processing Letters, 49(2), 625–641. https://doi.org/10.1007/s11063-018-9835-3
  • Huang, C., Zhang, H., & Huang, L. (2019). Almost periodicity analysis for a delayed Nicholson’s blowflies model with nonlinear density-dependent mortality term. Communications on Pure & Applied Analysis, 18(6), 3337–3349. https://doi.org/10.3934/cpaa.2019150
  • Huang, C., Long, X., Huang, L., & Fu, S. (2019). Stability of almost periodic Nicholson’s blowflies model involving patch structure and mortality terms. Canadian Mathematical Bulletin, 63(2), 405–422. https://doi.org/10.4153/S0008439519000511
  • Huang, C., Long, X., & Cao, J. (2020). Stability of anti-periodic recurrent neural networks with multi-proportional delays. Mathematical Methods in the Applied Sciences, 43(9), 6093–6102. https://doi.org/10.1002/mma.6350
  • Huang, C., Su, R., & Hu, Y. (2020). Global convergence dynamics of almost periodic delay Nicholson’s blowflies systems. Journal of Biological Dynamics, 14(1), 633–655. https://doi.org/10.1080/17513758.2020.1800841
  • Huang, C., Zhao, X., Cao, J., & Alsaadi, F. (2020). Global dynamics of neoclassical growth model with multiple pairs of variable delays. Nonlinearity, 33(12), 6819–6834. https://doi.org/10.1088/1361-6544/abab4e
  • Jenson, A. L., & Marshall, J. S. (1982). Application of a surplus production model to access environmental impacts on exploited populations of Daphnia pulex in the laboratory. Environmental Pollution Series A, Ecological and Biological, 28(4), 273–280. https://doi.org/10.1016/0143-1471(82)90143-X
  • Kumar, V., Dhar, J., & Bhatti, H. S. (2020). Stability switching dynamics of a food chain system incorporating gestation delays. Differential Equations and Dynamical Systems, 28(3), 685–705. https://doi.org/10.1007/s12591-019-00461-3
  • Kuznetsov, A., & Rinaldi, S. (1996). Remarks on food chain dynamics. Mathematical Biosciences, 134(1), 1–33. https://doi.org/10.1016/0025-5564(95)00104-2
  • Li, Y., & Zhao, K. (2010). 2n positive periodic solutions to n species non-autonomous Lotka-Volterra unidirectional food chains with harvesting terms. Mathematical Modelling and Analysis, 15(6), 313–326. https://doi.org/10.3846/1392-6292.2010.15.313-326
  • Li, Y., Zhao, K., & Ye, Y. (2011). Multiple positive periodic solutions of n species delay competition systems with harvesting terms. Nonlinear Analysis: Real World Applications, 12(2), 1013–1022. https://doi.org/10.1016/j.nonrwa.2010.08.024
  • Li, Y., & Ye, Y. (2013). Multiple positive almost periodic solutions to an impulsive non-autonomous Lotka-Volterra predator-prey system with harvesting terms. Communications in Nonlinear Science and Numerical Simulation, 18(11), 3190–3201. https://doi.org/10.1016/j.cnsns.2013.03.014
  • Li, W., Huang, L., & Ji, J. (2020). Globally exponentially stable periodic solution in a general delayed predator-prey model under discontinuous prey control strategy. Discrete and Continuous Dynamical Systems-Series B, 25(7), 2639–2664. https://doi.org/10.3934/dcdsb.2020026
  • Liu, B. (2015). Convergence of an SIS epidemic model with a constant delay. Applied Mathematics Letters, 2015(49) , 113–118. https://doi.org/10.1016/j.aml.2015.04.012
  • Liu, B., & Tunç, C. (2015). Pseudo almost periodic solutions for a class of first order differential iterative equations. Applied Mathematics Letters, 2015(40) , 29–34. https://doi.org/10.1016/j.aml.2014.08.019
  • Liu, B. (2017a). A generalization of the Bernfeld-Haddock conjecture. Applied Mathematics Letters, 2017 (65) , 7–13. https://doi.org/10.1016/j.aml.2016.09.018
  • Liu, B. (2017b). Asymptotic behavior of solutions to a class of non-autonomous delay differential equations. Journal of Mathematical Analysis and Applications, 446(1), 580–590. https://doi.org/10.1016/j.jmaa.2016.09.001
  • Liu, B. (2017c). Finite-time stability of CNNs with neutral proportional delays and time-varying leakage delays. Mathematical Methods in the Applied Sciences, 40(1), 167–174. https://doi.org/10.1002/mma.3976
  • Liu, Y., Wu, J., & Wang, X. (2020). Collective periodic motions in a multi particle model involving processing delay. Mathematical Methods in the Applied Sciences, 44(5), 3280–3302. https://doi.org/10.1002/mma.3976
  • Long, Z., & Wang, W. (2016). Positive pseudo almost periodic solutions for a delayed differential neoclassical growth model. Journal of Difference Equations and Applications, 22(12), 1893–1905. https://doi.org/10.1080/10236198.2016.1253688
  • Long, X., & Gong, S. (2020). New results on stability of Nicholson’s blowflies equation with multiple pairs of time-varying delays. Applied Mathematics Letters, 100 106027 , 1–5. https://doi.org/10.1016/j.aml.2019.106027
  • Long, X. (2020). Novel stability criteria on a patch structure Nicholson’s blowflies model with multiple pairs of time-varying delays. AIMS Mathematics, 5(6), 7387–7401. https://doi.org/10.3934/math.2020473
  • Ma, Z., Luo, Z., Zhen, J., & Zhao, H. (1995). The threshold of survival for predator-prey Volterra system of three species in a polluted environment. Systems Science and Mathematical Sciences, 8(4), 373–382. https://doi.org/10.1007/BF02007173
  • Ma, Z., Zong, W., & Luo, Z. (1997). The thresholds of survival for an n-dimensional food chain model in a polluted environment. Journal of Mathematical Analysis and Applications, 210(2), 440–458. https://doi.org/10.1006/jmaa.1997.5387
  • McCann, K., & Yodzis, P. (1994). Biological conditions for chaos in a three-species food chain. Ecology, 75(2), 561–564. https://doi.org/10.2307/1939558
  • Popov, V. (1973). Hyperstability of control systems. Springer-Verlag. https://doi.org/10.1115/1.3426824
  • Qian, C., & Hu, Y. (2020). Novel stability criteria on nonlinear density-dependent mortality Nicholson’s blowflies systems in asymptotically almost periodic environments. Journal of Inequalities and Applications, 2020(13) 1–18). https://doi.org/10.1186/s13660-019-2275-4
  • Rosenzweig, M. L. (1971). Paradox of enrichment: Destabilization of exploitation ecosystems in ecological time. Science, 171(3969), 385–387. https://doi.org/10.1126/science.171.3969.385
  • Shao, J. (2015). Pseudo almost periodic solutions for a Lasota-Wazewska model with an oscillating death rate. Applied Mathematics Letters, 2015(43) , 90–95. https://doi.org/10.1016/j.aml.2014.12.006
  • Stamov, G. (2009). On the existence of almost periodic solutions for the impulsive Losota-Wazewska model. Applied Mathematics Letters, 22(4), 516–520. https://doi.org/10.1016/j.aml.2008.07.002
  • Tan, Y. (2020). Dynamics analysis of Mackey-Glass model with two variable delays. Mathematical Biosciences and Engineering, 17(5), 4513–4526. https://doi.org/10.3934/mbe.2020249
  • Tang, S., & Chen, L. (2002). The periodic predator-prey Lotka-Volterra model with impulsive effect. Journal of Mechanics in Medicine and Biology, 2 2(03&04) , 267–296. https://doi.org/10.1142/S021951940200040X
  • Wang, W. (2015). Positive pseudo almost periodic solutions for a class of differential iterative equations with biological background. Applied Mathematics Letters, 2015(46) , 106–110. https://doi.org/10.1016/j.aml.2015.02.015
  • Xu, C., Liao, M., Li, P., Xiao, Q., & Yuan, S. (2019). A new method to investigate almost periodic solutions for an Nicholson’s blowflies model with time-varying delays and a linear harvesting term. Mathematical Biosciences and Engineering, 16(5), 3830–3840. https://doi.org/10.3934/mbe.2019189
  • Yan, J., Zhao, A., & Nieto, J. (2004). Existence and global attractivity of positive periodic solution of periodic single-species impulsive Lotka-Volterra systems. Mathematical and Computer Modelling, 40(5–6), 509–518. https://doi.org/10.1016/j.mcm.2003.12.011
  • Yu, Y., Gong, S., & Ning, Z. (2018). New studies on dynamic analysis of asymptotically almost periodic recurrent neural networks involving mixed delays. Advances in Difference Equations, 2018(1), 1–15. https://doi.org/10.1186/s13662-018-1872-8
  • Yu, Y., & Gong, S. (2018). Pseudo-almost periodic solutions for first-order neutral differential equations. Advances in Difference Equations, 2018(1), 1–10. https://doi.org/10.1186/s13662-018-1568-0
  • Zhang, B. (1990). Population’s ecological mathematics modeling. Publishing of Qingdao Marine University.
  • Zhang, C. (2003). Almost periodic type functions and ergodicity. Kluwer Academic/Science Press. https://doi.org/10.1007/978-94-007-1073-3
  • Zhang, T., Pang, L., & Liao, Y. (2016). Positive almost periodic solutions for a delayed predator–prey model with Hassell-Varley type functional response. Mathematical & Computational Applications, 21(2), 10–42. https://doi.org/10.3390/mca21020010
  • Zhang, H., Cao, Q., & Yang, H. (2020). Asymptotically almost periodic dynamics on delayed Nicholson-type system involving patch structure. Journal of Inequalities and Application, 2020(1), 1–25. https://doi.org/10.1186/s13660-020-02366-0
  • Zhang, J., & Huang, C. (2020). Dynamics analysis on a class of delayed neural networks involving inertial terms. Advances in Difference Equations, 2020(1 1–15). https://doi.org/10.1186/s13662-020-02566-4
  • Zhao, K., & Ye, Y. (2010). Four positive periodic solutions to a periodic Lotka-Volterra predatory-prey system with harvesting terms, nonlinear analysis. Real World Applications, 11(4), 2448–2455. https://doi.org/10.1016/j.nonrwa.2009.08.001
  • Zhao, K., & Li, Y. (2011). Multiple positive periodic solutions to a non-autonomous Lotka-Volterra predator-prey system with harvesting terms. Electronic Journal of Differential Equations, 2011(49) , 1–11. https://doi.org/10.1016/j.jmaa.2010.12.021
  • Zhao, K., & Liu, J. (2013). Existence of positive almost periodic solutions for delay Lotka-Volterra cooperative systems. Electronic Journal of Differential Equations, 2013(157) , 1–13. https://doi.org/10.1186/1687-2770-2013-163
  • Zhao, K., Ding, L., & Yang, F. (2014). Existence of multiple periodic solutions to Lotka-Volterra networks-like food-chain system with delays and impulses on time scales. International Journal of Biomathematics, 7(1), 1–30. https://doi.org/10.1142/S179352451450003X
  • Zhou, Q., & Shao, J. (2015a). Global exponential stability of almost periodic solutions for a delayed single population model with hereditary effect. Annales Polonici Mathematici, 2(113), 175–189. https://doi.org/10.4064/ap113-2-5
  • Zhou, Q., & Shao, J. (2015b). Positive almost periodic solutions for a single population model with hereditary effect and mixed delays. Mathematical Methods in the Applied Sciences, 38(18), 4982–5004. https://doi.org/10.1002/mma.3419
  • Zhou, Q., & Shao, J. (2016). A note on Arzela-Ascoli’s lemma in almost periodic problems. Mathematical Methods in the Applied Sciences, 40(1), 274–278. https://doi.org/10.1002/mma.3988

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.