398
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Industry’s role in Japan’s energy transition: soft-linking GCAM and National IO table with extended electricity supply sectors

, &
Received 12 May 2023, Accepted 17 May 2023, Published online: 25 May 2023

References

  • Böhringer, C., & Rutherford, T. F. (2008). Combining bottom-up and top-down. Energy Economics, 30(2), 574–596. https://doi.org/10.1016/j.eneco.2007.03.004
  • Calvin, K., Bond-Lamberty, B., Clarke, L., Edmonds, J., Eom, J., Hartin, C., Kim, S., Kyle, P., Link, R., Moss, R., McJeon, H., Patel, P., Smith, S., Waldhoff, S., & Wise, M. (2017). The SSP4: A world of deepening inequality. Global Environmental Change, 42, 284–296. https://doi.org/10.1016/j.gloenvcha.2016.06.010
  • Calvin, K., Patel, P., Clarke, L., Asrar, G., Bond-Lamberty, B., Cui, R. Y., Di Vittorio, A., Dorheim, K., Edmonds, J., Hartin, C., Hejazi, M., Horowitz, R., Iyer, G., Kyle, P., Kim, S., Link, R., McJeon, H., Smith, S. J., Snyder, A., … Wise, M. (2019). GCAM v5.1: Representing the linkages between energy, water, land, climate, and economic systems. Geoscientific Model Development, 12(2), 677–698. https://doi.org/10.5194/gmd-12-677-2019
  • Clarke, L., Kim, S., Edmonds, J., & Dooley, J. (2007). Model Documentation for the MiniCAM Climate Change Science Program Stabilization Scenarios: CCSP Product 2.1a (PNNL-16735). Pacific Northwest National Laboratory.
  • Daly, H. E., Scott, K., Strachan, N., & Barrett, J. (2015). Indirect CO2 Emission Implications of Energy System Pathways: Linking IO and TIMES Models for the UK. Environmental Science and Technology, 49(17), 10701–10709. https://doi.org/10.1021/acs.est.5b010202
  • Deane, J. P., Chiodi, A., Gargiulo, M., & Gallachóir, B. P. (2012). Soft-linking of a power systems model to an energy systems model. Energy, 42(1), 303–312. https://doi.org/10.1016/j.energy.2012.03.052
  • Deetman, S., de Boer, H. S., Van Engelenburg, M., van der Voet, E., & van Vuuren, D. P. (2021). Projected material requirements for the global electricity infrastructure – generation, transmission and storage. Resources, Conservation and Recycling, 164(September 2020), 105200. https://doi.org/10.1016/j.resconrec.2020.105200
  • Fortes, P., Simões, S., Seixas, J., Van Regemorter, D., & Ferreira, F. (2013). Top-down and bottom-up modelling to support low-carbon scenarios: Climate policy implications. Climate Policy, 13(3), 285–304. https://doi.org/10.1080/14693062.2013.768919
  • Frei, C. W., Haldi, P. A., & Sarlos, G. (2003). Dynamic formulation of a top-down and bottom-up merging energy policy model. Energy Policy, 31(10), 1017–1031. https://doi.org/10.1016/S0301-4215(02)00170-2
  • Ghersi, F. (2015). Hybrid bottom-up/top-down energy and economy outlooks: A review of IMACLIM-S experiments. Frontiers in Environmental Science, 3(NOV), 1–18. https://doi.org/10.3389/fenvs.2015.00074
  • Government of Japan. (2021). Key Policies of the Suga Cabinet > Carbon Neutrality. 2021.4.22. https://www.japan.go.jp/key_policies_of_the_suga_cabinet/carbon_neutrality.html.
  • Gupta, D., Ghersi, F., Vishwanathan, S. S., & Garg, A. (2020). Macroeconomic assessment of India’s development and mitigation pathways. Climate Policy, 20(7), 779–799. https://doi.org/10.1080/14693062.2019.1648235
  • Heinbach, K., Aretz, A., Hirschl, B., Prahl, A., & Salecki, S. (2014). Renewable energies and their impact on local value added and employment. Energy, Sustainability and Society, 4(1), 1–10. https://doi.org/10.1186/2192-0567-4-1
  • Heinrichs, H. U., Schumann, D., Vögele, S., Biß, K. H., Shamon, H., Markewitz, P., Többen, J., Gillessen, B., Gotzens, F., & Ernst, A. (2017). Integrated assessment of a phase-out of coal-fired power plants in Germany. Energy, 126(August 2015), 285–305. https://doi.org/10.1016/j.energy.2017.03.017
  • Hertwich, E. G., Gibon, T., Bouman, E. A., Arvesen, A., Suh, S., Heath, G. A., Bergesen, J. D., Ramirez, A., Vega, M. I., & Shi, L. (2015). Integrated life-cycle assessment of electricity-supply scenarios confirms global environmental benefit of low-carbon technologies. Proceedings of the National Academy of Sciences of the United States of America, 112(20), 6277–6282. https://doi.org/10.1073/pnas.1312753111
  • Igos, E., Rugani, B., Rege, S., Benetto, E., Drouet, L., & Zachary, D. S. (2015). Combination of equilibrium models and hybrid life cycle-input–output analysis to predict the environmental impacts of energy policy scenarios. Applied Energy, 145, 234–245. https://doi.org/10.1016/j.apenergy.2015.02.007
  • Intergovernmental Panel on Climate Change [IPCC]. (2007). Climate Change 2007 Mitigation. In B. Metz, O. Davidson, P. Bosch, R. Dave, & L. Meyer (Eds.), Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/CBO9780511546013.
  • IONGES (Input–Output table for analysis of Next-Generation Energy System 2011 table). (2016). Satoshi Nakano, Sonoe Arai, Ayu Washizu “Economic impacts of Japan's renewable energy sector and the feed-in tariff system: Using an input–output table to analyze a next-generation energy system, https://doi.org/10.1007/s10018-016-0158-1. Available at: http://www.f.waseda.jp/washizu/table.html (in Japanese).
  • IONGES (Input–Output table for analysis of Next-Generation Energy System 2015&2030 table), Washizu, A., & Nakano, S. (2021). Preparation of 2015 Input–Output Table for Analysis of Next-Generation Energy Systems,” Working Paper, Institute of Advanced Social Science, Waseda University, IASS WP 2021-J002,1-15 (in Japanese).
  • IPCC. (2014). Climate Change 2014 Mitigation of Climate Change. In O. Edenhofer, R. Pichs-Madruga, Y. Sokona, J. C. Minx, E. Farahani, S. Kadner, K. Seyboth, A. Adler, I. Baum, S. Brunner, P. Eickemeier, B. Kriemann, J. Savolainen, S. Schlömer, C. von Stechow, & T. Zwickel (Eds.), Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press. https://doi.org/10.1017/cbo9781107415416.
  • IPCC. (2022). Climate change 2022: Impacts, adaptation, and vulnerability. In H.-O. Pörtner, D. C. Roberts, M. Tignor, E. S. Poloczanska, K. Mintenbeck, A. Alegría, M. Craig, S. Langsdorf, S. Löschke, V. Möller, A. Okem, & B. Rama (Eds.), Contribution of working group II to the sixth assessment report of the intergovernmental panel on climate change (pp. 3056). Cambridge University Press, https://doi.org/10.1017/9781009325844.
  • JGCRI (Joint Global Change Research Institute). (2021). GCAM v6.0 Documentation, https://doi.org/10.5281/zenodo.6619287.
  • Ju, Y., Sugiyama, M., Kato, E., Matsuo, Y., Oshiro, K., & Silva Herran, D. (2021). Industrial decarbonization under Japan’s national mitigation scenarios: a multi-model analysis. Sustainability Science, 16(2), 411–427. https://doi.org/10.1007/s11625-021-00905-2
  • Ju, Y., Sugiyama, M., Kato, E., Oshiro, K., & Wang, J. (2022). Job creation in response to Japan’s energy transition towards deep mitigation: An extension of partial equilibrium integrated assessment models. Applied Energy, 318(March), 119178. https://doi.org/10.1016/j.apenergy.2022.119178
  • Kang, J., Ng, T. S., Su, B., & Yuan, R. (2020). Optimizing the chinese electricity mix for co2 emission reduction: An input-output linear programming model with endogenous capital. Environmental Science & Technology, https://doi.org/10.1021/acs.est.9b05199
  • Kim, S. H., Edmonds, J., Lurz, J., Smith, S. J., & Wise, M. (2006). The object-oriented energy climate technology systems (ObjECTS) framework for integrated assessment: Hybrid modeling of transportation. The Energy Journal, 27, 63–91. http://www.jstor.org/stable/23297046.
  • Krook-Riekkola, A., Berg, C., Ahlgren, E. O., & Söderholm, P. (2017). Challenges in top-down and bottom-up soft-linking: Lessons from linking a Swedish energy system model with a CGE model. Energy, 141, 803–817. https://doi.org/10.1016/j.energy.2017.09.107
  • Labriet, M., Drouet, L., Vielle, M., Loulou, R., Kanudia, A., & Haurie, A. (2015). Assessment of the Effectiveness of Global Climate Policies Using Coupled Bottom-up and Top-down Models. Fondazione Eni Enrico Mattei (FEEM). http://www.jstor.org/stable/resrep01141
  • Luderer, G., Pehl, M., Arvesen, A., Gibon, T., Bodirsky, B. L., de Boer, H. S., Fricko, O., Hejazi, M., Humpenöder, F., Iyer, G., Mima, S., Mouratiadou, I., Pietzcker, R. C., Popp, A., van den Berg, M., van Vuuren, D., & Hertwich, E. G. (2019). Environmental co-benefits and adverse side-effects of alternative power sector decarbonization strategies. Nature Communications, 10), https://doi.org/10.1038/s41467-019-13067-8
  • Martinsen, T. (2011). Introducing technology learning for energy technologies in a national CGE model through soft links to global and national energy models. Energy Policy, 39(6), 3327–3336. https://doi.org/10.1016/j.enpol.2011.03.025
  • McDowall, W., Solano Rodriguez, B., Usubiaga, A., & Acosta Fernández, J. (2018). Is the optimal decarbonization pathway influenced by indirect emissions? Incorporating indirect life-cycle carbon dioxide emissions into a European TIMES model. Journal of Cleaner Production, 170, 260–268. https://doi.org/10.1016/j.jclepro.2017.09.132
  • Messner, S., & Schrattenholzer, L. (2000). MESSAGE-MACRO: linking an energy supply model with a macroeconomic module and solving it iteratively. Energy, 25(3), 267–282. https://doi.org/10.1016/S0360-5442(99)00063-8
  • Ministry of economy, trade and industry. (METI). (2021). Achieve carbon neutrality in 2050. Available at: https://www.enecho.meti.go.jp/committee/council/basic_policy_subcommittee/036/036_005.pdf.
  • Müller, D. B. (2013). Carbon emissions of infrastructure development. Environmental Science & Technology, 47(20), 11739–11746. https://doi.org/10.1021/es402618m
  • Oei, P., Hermann, H., Herpich, P., Holtem, O., Lünenbürger, B., & Schult, C. (2020b). Coal phase-out in Germany – Implications and policies for affected regions. Energy, 196, 117004. https://doi.org/10.1016/j.energy.2020.117004
  • Pauliuk, S., Arvesen, A., Stadler, K., & Hertwich, E. G. (2017). Industrial ecology in integrated assessment models. Nature Climate Change, 7(1), 13–20. https://doi.org/10.1038/nclimate3148
  • Pehl, M., Arvesen, A., Humpenöder, F., Popp, A., Hertwich, E. G., & Luderer, G. (2017). Understanding future emissions from low-carbon power systems by integration of life-cycle assessment and integrated energy modelling. Nature Energy, 2(12), 939–945. https://doi.org/10.1038/s41560-017-0032-9
  • Rocco, M. V., Rady, Y., & Colombo, E. (2018). Soft-linking bottom-up energy models with top-down input–output models to assess the environmental impact of future energy scenarios. Modelling, Measurement and Control C, 79(3), 103–110. https://doi.org/10.18280/mmc_c.790307
  • Shiraki, H., Sugiyama, M., Matsuo, Y., Komiyama, R., Fujimori, S., Kato, E., Oshiro, K., & Silva, D. H. (2021). The role of renewables in the Japanese power sector: implications from the EMF35. Sustainability Science, 16. https://doi.org/10.1007/s11625-021-00917-y
  • Siala, K., de la Rúa, C., Lechón, Y., & Hamacher, T. (2019). Towards a sustainable European energy system: Linking optimization models with multi-regional input–output analysis. Energy Strategy Reviews, 26(August), 100391. https://doi.org/10.1016/j.esr.2019.100391
  • Sugiyama, M., Fujimori, S., Wada, K., Oshiro, K., Kato, E., Komiyama, R., Silva Herran, D., Matsuo, Y., Shiraki, H., & Ju, Y. (2021). EMF 35 JMIP study for Japan’s long-term climate and energy policy: scenario designs and key findings. Sustainability Science, 16(2), 355–374. https://doi.org/10.1007/s11625-021-00913-2
  • Vögele, S., Kuckshinrichs, W., & Markewitz, P. (2009). A hybrid IO energy model to analyze CO2 reduction policies: A case of Germany. In S. Suh (Ed.), Handbook of input–output economics in industrial ecology, Eco-efficiency in industry and science 23 (pp. 337–356). Springer.
  • Wene, C. O. (1996). Energy-economy analysis: Linking the macroeconomic and systems engineering approaches. Energy, 21(9), 809–824. https://doi.org/10.1016/0360-5442(96)00017-5
  • Wilson, C., Grubler, A., Gallagher, K. S., & Nemet, G. F. (2012). Marginalization of end-use technologies in energy innovation for climate protection. Nature Climate Change, 2(11), 780–788. doi:10.1038/nclimate1576

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.