60
Views
23
CrossRef citations to date
0
Altmetric
Research Article

Dynamic regulation of microtubule coils in ADP-induced platelet shape change by p160ROCK (Rho-kinase)

, , , , , , , & show all
Pages 159-169 | Published online: 07 Jul 2009

References

  • Holmsen H. Significance of testing platelet functions in vitro. Eur J Clin Invest 1994; 24 (Suppl 1): 3–8.
  • Wurzinger L J. Histophysiology of the circulating platelet. Adv Anat Embryol Cell Biol 1990; 120: 1–96.
  • Kenney D M, LinckR W. The cystoskeleton of unstimulated blood platelets: structure and composition of the isolated marginal microtubular band. J Cell Sci 1985; 78: 1–22.
  • White J G, SaukJ J. Microtubule coils in spread blood platelets. Blood 1984; 64: 470–8.
  • Allen R D, Zacharski L R, Widirstky S T, Rosenstein R, Zaitlin L M, Burgess D R. Transformation and motility of human platelets: details of the shape change and release reaction observed by optical and electron microscopy. J Cell Biol 1979; 83: 126–42.
  • Barnhart M I, Walsh R T, Robinson J A. A three-dimensional view of platelet responses to chemical stimuli. Ann NY Acad Sci 1972; 201: 360–90.
  • Hantgan R R. A study of the kinetics of ADP-triggered platelet shape change. Blood 1984; 64: 896–906.
  • White J G. An overview of platelet structural physiology. Scanning Microsc 1987; 1: 1677–700.
  • Fox J E. Regulation of platelet function by the cytoskeleton. Adv Exp Med Biol 1993; 344: 175–85.
  • Siess W. Molecular mechanisms of platelet activation. Physiol Rev 1989; 69: 58–178.
  • White J G, Rao G H. Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. AmJ Pathol 1998; 152: 597–609.
  • Zucker M B, Nachmias V T. Platelet activation. Arteriosclerosis 1985; 5: 2–18.
  • Hartwig J H. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 1992; 118: 1421–42.
  • Escolar G, Krumwiede M, White J G. Organization of the actin cytoskeleton of resting and activated platelets in suspension. AmJ Pathol 1986; 123: 86–94.
  • Steiner M, Ikeda Y. Quantitative assessment of polymerized and depolymerized platelet microtubules. Changes caused by aggregating agents. J Clin Invest 1979; 63: 443–8.
  • Kenney D M, Chao F C. Ionophore-induced disassembly of blood platelet microtubules: effect of cyclic AMP and indomethacin. J Cell Physiol 1980; 103: 289–98.
  • Nachmias V T. Cytoskeleton of human platelets at rest and after spreading. J Cell Biol 1980; 86: 795–802.
  • Nachmias V T, Sullender J, Fallon J, Asch A. Observations on the ‘cytoskeleton’ of human platelets. Thromb Haemost 1980; 42: 1661–6.
  • Mattson J C, Zuiches C A. Elucidation of the platelet cyto- skeleton. Ann NY Acad Sci 1981; 370: 11–21.
  • Lewis J C, White M S, Prater T, Taylor R G, Davis K S. Ultrastructural analysis of platelets in nonhuman primates. III. Stereo microscopy of microtubules during platelet adhesion and the release reaction. Exp Mol Pathol 1982; 37: 370–81.
  • White J G, Rao G H. Influence of a microtubule stabilizing agent on platelet structural physiology. AmJ Pathol 1983; 112: 207–17.
  • Hartwig J H, DeSisto M. The cytoskeleton of the resting human blood platelet: structure of the membrane skeleton and its attachment to actin filaments. J Cell Biol 1991; 112: 407–25.
  • Nishimura Y, Itoh K, Yoshioka K, Uehata M, Himeno M. Small guanosine triphosphatase Rho/Rho-associated kinase as a novel regulator of intracellular redistribution of lysosomes in invasive tumor cells. Cell Tissue Res 2000; 301: 341–51.
  • Takaishi K, Kikuchi A, Kuroda S, Kotani K, Sasaki T, Takai Y. Involvement of rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI) in cell motility. Mol Cell Biol 1993; 13: 72–9.
  • Prendergast G C, Khosravi-Far R, Solski P A, Kurzawa H, Lebowitz P F, Der C J. Critical role of Rho in cell transformation by oncogenic Ras. Oncogene 1995; 10: 2289–96.
  • Perona R, Esteve P, Jimenez B, Ballestero R P, Ramon y Cajal S, Lacal J C. Tumorigenic activity of rho genes from Aplysia californica. Oncogene 1993; 8: 1285–92.
  • Paterson H F, Self A J, Garrett M D, Just I, Aktories K, Hall Microinjection of recombinant p21rho induces rapid changes in cell morphology. J Cell Biol 1990; 111: 1001–7.
  • Kishi K, Sasaki T, Kuroda S, Itoh T, Takai Y. Regulation of cytoplasmic division of Xenopus embryo by rho p21 and its inhibitory GDP/GTP exchange protein (rho GDI). J Cell Biol 1993; 120: 1187–95.
  • Hall A. Small GTP-binding proteins and the regulation of the actin cytoskeleton. Annu Rev Cell Biol 1994; 10: 31–54.
  • Palazzo A F, CookT A, Alberts A S, Gundersen G G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nat Cell Biol 2001; 3: 723–9.
  • Pletjushkina O J, Rajfur Z, Pomorski P, Oliver T N, Vasiliev J M, Jacobson K A. Induction of cortical oscillations in spreading cells by depolymerization of microtubules. Cell Motil Cytoskeleton 2001; 48: 235–44.
  • Roychowdhury S, Panda D, Wilson L, RasenickM M. G protein alpha subunits activate tubulin GTPase and modulate microtubule polymerization dynamics. J Biol Chem 1999; 274: 13 485–90.
  • Yano Y, Sakon M, Kambayashi J, Kawasaki T, Senda T, Tanaka K, Yamada F, Shibata N. Cytoskeletal reorganization of human platelets induced by the protein phosphatase 1/2 A inhibitors okadaic acid and calyculin A. BiochemJ 1995; 307: 439–49.
  • Drewes G, Ebneth A, Mandelkow E M. MAPs, MARKs and microtubule dynamics. Trends BiochemSci 1998; 23: 307–11.
  • Desai A, Mitchison T J. Microtubule polymerization dynamics. Annu Rev Cell Dev Biol 1997; 13: 83–117.
  • Nogales E. Structural insights into microtubule function. Annu Rev Biochem 2000; 69: 277–302.
  • Verin A D, Birukova A, Wang P, Liu F, Becker P, Birukov K, Garcia J G. Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. AmJ Physiol Lung Cell Mol Physiol 2001; 281: L565–74.
  • Kolodney M S, Wysolmerski R B. Isometric contraction by fibroblasts and endothelial cells in tissue culture: a quantitative study. J Cell Biol 1992; 117: 73–82.
  • Danowski B A. Microtubule dynamics in serum-starved and serum-stimulated Swiss 3T3 mouse fibroblasts: implications for the relationship between serum- induced contractility and microtubules. Cell Motil Cytoskeleton 1998; 40: 1–12.
  • Jin J, Kunapuli S P. Coactivation of two different G protein- coupled receptors is essential for ADP-induced platelet aggregation. Proc Natl Acad Sci USA 1998; 95: 8070–4.
  • Savi P, Beauverger P, Labouret C, Delfaud M, Salel V, Kaghad M, Herbert J M. Role of P2Y1 purinoceptor in ADP- induced platelet activation. FEBS Lett 1998; 422: 291–5.
  • Jantzen H M, Gousset L, Bhaskar V, Vincent D, Tai A, Reynolds E E, Conley P B. Evidence for two distinct G- protein-coupled ADP receptors mediating platelet activation. Thromb Haemost 1999; 81: 111–7.
  • Kunapuli S P. Multiple P2 receptor subtypes on platelets: a new interpretation of their function. Trends Pharmacol Sci 1998; 19: 391–4.
  • Kunapuli S P. Functional characterization of platelet ADP receptors [Review]. Platelets 1998; 9: 343–51.
  • Kunapuli S P, Daniel J L. P2 receptor subtypes in the cardiovascular system. BiochemJ 1998; 336: 513–23.
  • Paul B Z, Daniel J L, Kunapuli S P. Platelet shape change is mediated by both calcium-dependent and -independent signal- ing pathways. Role of p160 rho-associated coiled-coil-contain- ing protein kinase in platelet shape change. J Biol Chem 1999; 274: 28293–300.
  • Bauer M, Retzer M, Wilde J I, Maschberger P, Essler M, Aepfelbacher M, Watson S P, Siess W. Dichotomous regulation of myosin phosphorylation and shape change by Rho-kinase and calcium in intact human platelets. Blood 1999; 94: 1665–72.
  • Klages B, Brandt U, Simon M I, Schultz G, Offermanns S. Activation of G12/G13 results in shape change and Rho/Rho- kinase-mediated myosin light chain phosphorylation in mouse platelets. J Cell Biol 1999; 144: 745–54.
  • Nakai K, Suzuki Y, Kihira H, Wada H, Fujioka M, Ito M, Nakano T, Kaibuchi K, Shiku H, Nishikawa M. Regulation of myosin phosphatase through phosphorylation of the myosin-binding subunit in platelet activation. Blood 1997; 90: 3936–42.
  • Kimura K, Ito M, Amano M, Chihara K, Fukata Y, Nakafuku M, Yamamori B, Feng J, Nakano T, Okawa K, Iwamatsu A, Kaibuchi K. Regulation of myosin phosphatase by Rho and Rho-associated kinase (Rho-kinase) [see com- ments]. Science 1996; 273: 245–8.
  • Noda M, Yasuda-Fukazawa C, Moriishi K, Kato T, Okuda T, Kurokawa K, Takuwa Y. Involvement of rho in GTP gamma S-induced enhancement of phosphorylation of 20 kDa myosin light chain in vascular smooth muscle cells: inhibition of phosphatase activity. FEBS Lett 1995; 367: 246–50.
  • Kozasa T, Jiang X, Hart M J, Sternweis P M, Singer W D, Gilman A G, Bollag G, Sternweis P C. p115 RhoGEF, a GTPase activating protein for Galpha12 and Galpha13 [see comments]. Science 1998; 280: 2109–11.
  • Amano M, Chihara K, Kimura K, Fukata Y, Nakamura N, Matsuura Y, Kaibuchi K. Formation of actin stress fibers and focal adhesions enhanced by Rho-kinase. Science 1997; 275: 1308–11.
  • Kureishi Y, Kobayashi S, Amano M, Kimura K, Kanaide H, Nakano T, Kaibuchi K, Ito M. Rho-associated kinase directly induces smooth muscle contraction through myosin light chain phosphorylation. J Biol Chem 1997; 272: 12 257–60.
  • Chihara K, Amano M, Nakamura N, Yano T, Shibata M, Tokui T, Ichikawa H, Ikebe R, Ikebe M, Kaibuchi K. Cytoskeletal rearrangements and transcriptional activation of c-fos serum response element by Rho-kinase. J Biol Chem 1997; 272: 25 121–7.
  • Uehata M, Ishizaki T, Satoh H, Ono T, Kawahara T, Morishita T, Tamakawa H, Yamagami K, Inui J, Maekawa M, Narumiya S. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension [see comments]. Nature 1997; 389: 990–4.
  • Amano M, Chihara K, Nakamura N, Fukata Y, Yano T, Shibata M, Ikebe M, Kaibuchi K. Myosin II activation promotes neurite retraction during the action of Rho and Rho- kinase. Genes Cells 1998; 3: 177–88.
  • Essler M, Amano M, Kruse H J, Kaibuchi K, Weber P C, Aepfelbacher M. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 1998; 273: 21867–74.
  • Hirose M, Ishizaki T, Watanabe N, Uehata M, Kranenburg O, Moolenaar W H, Matsumura F, Maekawa M, Bito H, Narumiya S. Molecular dissection of the Rho-associated protein kinase (p160ROCK)-regulated neurite remodeling in neuroblastoma N1E-115 cells. J Cell Biol 1998; 141: 1625–36.
  • Majumdar M, Seasholtz T M, Goldstein D, de Lanerolle P, Brown J H. Requirement for Rho-mediated myosin light chain phosphorylation in thrombin-stimulated cell rounding and its dissociation from mitogenesis. J Biol Chem 1998; 273: 10 099–106.
  • Nemoto Y, Namba T, Teru-uchi T, Ushikubi F, Morii N, Narumiya S. A rho gene product in human blood platelets. I. Identification of the platelet substrate for botulinum C3 ADP-ribosyltransferase as rhoA protein. J Biol Chem 1992; 267: 20 916–20.
  • Paul B Z, Jin J, Kunapuli S P. Molecular mechanism of thromboxane A(2)-induced platelet aggregation. Essential role for p2t(ac) and alpha(2a) receptors. J Biol Chem 1999; 274: 29 108–14.
  • Jin J, Daniel J L, Kunapuli S P. Molecular basis for ADP- induced platelet activation II: the P2Y1 receptor mediates ADP-induced intracellular calcium mobilization and shape change in platelets. J Biol Chem 1998; 273: 2030–4.
  • Zablocki J A, Miyano M, Garland R B, Pireh D, Schretzman L, Rao S N, LindmarkR J, Panzer-Knodle S G, Nicholson N S, Taite B B, Salyers A K, King L W, Campion J G, Feigen L P. Potent in vitro and invivo inhibitors of platelet aggregation based upon the Arg-Gly-Asp-Phe sequence of fibrinogen. J Med Chem 1993; 36: 1811–9.
  • Weisel J W, Nagaswami C. Computer modeling of fibrin polymerization kinetics correlated with electron microscope and turbidity observations: clot structure and assembly are kinetically controlled. Biophys J 1992; 63: 111–28.
  • Wang D, Villasante A, Lewis S A, Cowan N J. The mammalian beta-tubulin repertoire: hematopoietic expression of a novel, heterologous beta-tubulin isotype. J Cell Biol 1986; 103: 1903–10.
  • Cox A C, Carroll R C, White J G, Rao G H. Recycling of platelet phosphorylation and cytoskeletal assembly. J Cell Biol 1984; 98: 8–15.
  • Daniel J L, Adelstein R S. Isolation and properties of platelet myosin light chain kinase. Biochemistry 1976; 15: 2370–7.
  • Hathaway D R, Adelstein R S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc Natl Acad Sci USA 1979; 76: 1653–7.
  • Suzuki Y, Yamamoto M, Wada H, Ito M, Nakano T, Sasaki Y, Narumiya S, Shiku H, Nishikawa M. Agonist-induced regulation of myosin phosphatase activity in human platelets through activation of Rho-kinase. Blood 1999; 93: 3408–17.
  • Daniel J L, Molish I R, Rigmaiden M, Stewart G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 1984; 259: 9826–31.
  • Offermanns S, Toombs C F, Hu Y H, Simon M I. Defective platelet activation in G alpha(q)-deficient mice. Nature 1997; 389: 183–6.
  • Behnke O. Incomplete microtubules observed in mammalian blood platelets during microtubule polymerization. J Cell Biol. 1967; 34: 697–701.
  • Behnke O. Microtubules in disk-shaped blood cells. Int Rev Exp Pathol 1970; 9: 1–92.
  • White J G, Krivit W. An ultrastructural basis for the shape changes induced in platelets by chilling. Blood 1967; 30: 625–35.
  • White J G. Platelet morphology. In: Johnson S A, ed. The Circulating Platelet. New York: Academic Press; 1971: 45–121.
  • Tablin F, Reeber M J, Nachmias V T. Platelets contain a 210K microtubule-associated protein related to a similar protein in HeLa cells. J Cell Sci 1988; 90: 317–24.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.