535
Views
9
CrossRef citations to date
0
Altmetric
Special Review Section: Utility and Development of Microfluidic Platforms for Platelet Research

Utility of microfluidic devices to study the platelet–endothelium interface

ORCID Icon, , , , , & show all
Pages 449-456 | Received 17 Oct 2016, Accepted 05 Dec 2016, Published online: 30 Mar 2017

References

  • Marcus AJ, Broekman MJ, Drosopoulos JHF, Olson KE, Islam N, Pinsky DJ, Levi R. Role of CD39 (NTPDase-1) in thromboregulation, cerebroprotection, and cardioprotection. Seminars in Thromb Hemost 2005;31(2):234–246.
  • de Graaf JC, Banga JD, Moncada S, Palmer RM, de Groot PG, Sixma JJ. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation 1992;85(6):2284–2290.
  • Higgs EA, Higgs GA, Moncada S, Vane JR. Prostacyclin (PGI2) inhibits the formation of platelet thrombi in arterioles and venules of the hamster cheek pouch 1977. Br J Pharmacol 1997;120(4 Suppl):439–443–438.
  • Michiels C. Endothelial cell functions. J Cell Physiol 2003;196(3):430–443.
  • Woulfe D, Yang J, Brass L. ADP and platelets: the end of the beginning. J Clin Invest 2001;107(12):1503–1505.
  • Gerlach H, Esposito C, Stern DM. Modulation of endothelial hemostatic properties: An active role in the host response. Annu Rev Med 1990;41(1):15–24.
  • Sylman JL, Lantvit SM, Vedepo MC, Reynolds MM, Neeves KB. Transport limitations of nitric oxide inhibition of platelet aggregation under flow. Ann Biomed Eng 2013;41(10):2193–2205.
  • Thon JN, Mazutis L, Wu S, Sylman JL, Ehrlicher A, Machlus KR, Feng Q, Lu S, Lanza R, Neeves KB, et al. Platelet bioreactor-on-a-chip. Blood 2014;124(12):1857–1867.
  • Yeom E, Park JH, Kang YJ, Lee SJ. Microfluidics for simultaneous quantification of platelet adhesion and blood viscosity. Sci Rep 2016;6:24994.
  • Reitsma S, Slaaf DW, Vink H, van Zandvoort MAMJ, oude Egbrink MGA. The endothelial glycocalyx: composition, functions, and visualization. Pflügers Archiv: Eur J Physiol 2007;454(3):345–359.
  • Weinbaum S, Tarbell JM, Damiano ER. The structure and function of the endothelial glycocalyx layer. Annu Rev Biomed Eng 2007;9:121–167.
  • Chappell D, Jacob M, Paul O, Rehm M, Welsch U, Stoeckelhuber M, Conzen P, Becker BF. The glycocalyx of the human umbilical vein endothelial cell: an impressive structure ex vivo but not in culture. Circ Res 2009;104(11):1313–1317.
  • Becker BF, Jacob M, Leipert S, Salmon AHJ, Chappell D. Degradation of the endothelial glycocalyx in clinical settings: searching for the sheddases. Br J Clin Pharmacol 2015;80(3):389–402.
  • Pries AR, Secomb TW, Jacobs H, Sperandio M, Osterloh K, Gaehtgens P. Microvascular blood flow resistance: role of endothelial surface layer. Am J Physiol 1997; 273 (5 Pt 2): H2272–2279.
  • Bergmeier W, Hynes RO. Extracellular matrix proteins in hemostasis and thrombosis. Cold Spring Harbor Perspect Biol 2012;4(2); PMID: 21937733.
  • White-Adams TC, Berny MA, Patel IA, Tucker EI, Gailani D, Gruber A, McCarty OJT. Laminin promotes coagulation and thrombus formation in a factor XII-dependent manner. J Thromb Haemost 2010;8(6):1295–1301.
  • Chen J, López JA. Interactions of platelets with subendothelium and endothelium. Microcirculation 2005;12(3):235–246.
  • Frenette PS, Moyna C, Hartwell DW, Lowe JB, Hynes RO, Wagner DD. Platelet-endothelial interactions in inflamed mesenteric venules. Blood 1998;91(4):1318–1324.
  • Engelmann B, Massberg S. Thrombosis as an intravascular effector of innate immunity. Nat Rev Immunol 2013;13(1):34–45.
  • Mody NA, King MR. Influence of Brownian motion on blood platelet flow behavior and adhesive dynamics near a planar wall. Langmuir ACS J Surf Colloids 2007;23(11):6321–6328.
  • Kwak BR, Mulhaupt F, Veillard N, Gros DB, Mach F. Altered pattern of vascular connexin expression in atherosclerotic plaques. Arteriosclerosis Thromb Vasc Biol 2002;22(2):225–230.
  • Tzima E, Irani-Tehrani M, Kiosses WB, Dejana E, Schultz DA, Engelhardt B, Cao G, DeLisser H, Schwartz MA. A mechanosensory complex that mediates the endothelial cell response to fluid shear stress. Nature 2005;437(7057):426–431.
  • Ensley AE, Nerem RM, Anderson DEJ, Hanson SR, Hinds MT. Fluid shear stress alters the hemostatic properties of endothelial outgrowth cells. Tissue Eng Part A 2012;18(1–2):127–136.
  • Konstantopoulos K, Kukreti S, McIntire LV. Biomechanics of cell interactions in shear fields. Adv Drug Delivery Rev 1998;33(1–2):141–164.
  • Konstantopoulos K, Chow TW, Turner NA, Hellums JD, Moake JL. Shear stress-induced binding of von Willebrand factor to platelets. Biorheology 1997;34(1):57–71.
  • Lawrence MB, McIntire LV, Eskin SG. Effect of flow on polymorphonuclear leukocyte/endothelial cell adhesion. Blood 1987;70(5):1284–1290.
  • Baumgartner HR. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc Res 1973;5(2):167–179.
  • Sixma JJ, Sakariassen KS, Bolhuis PA. The role of factor VIII-von Willebrand factor in adhesion of platelets to the vessel wall. In: H. L. Nossel and H. J. Vogel, editors. Pathobiology of the endothelial cell. New York: Elsevier; 1982. p. 139–152.
  • Sakariassen KS, Bolhuis PA, Sixma JJ. Human blood platelet adhesion to artery subendothelium is mediated by factor VIII-Von Willebrand factor bound to the subendothelium. Nature 1979;279(5714):636–638.
  • Lopez-Vilchez I, Hedner U, Altisent C, Diaz-Ricart M, Escolar G, Galan AM. Redistribution and hemostatic action of recombinant activated factor VII associated with platelets. Am J Pathol 2011;178(6):2938–2948.
  • Jaffe EA, Nachman RL, Becker CG, Minick CR. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973;52(11):2745–2756.
  • Sakariassen KS, Aarts PA, de Groot PG, Houdijk WP, Sixma JJ. A perfusion chamber developed to investigate platelet interaction in flowing blood with human vessel wall cells, their extracellular matrix, and purified components. J Laboratory Clin Med 1983;102(4):522–535.
  • Cooke BM, Usami S, Perry I, Nash GB. A simplified method for culture of endothelial cells and analysis of adhesion of blood cells under conditions of flow. Microvasc Res 1993;45(1):33–45.
  • D’Andrea G, Chetta M, Margaglione M. Inherited platelet disorders: thrombocytopenias and thrombocytopathies. Blood Transfusion 2009;7(4):278–292.
  • Alevriadou BR, Moake JL, Turner NA, Ruggeri ZM, Folie BJ, Phillips MD, Schreiber AB, Hrinda ME, McIntire LV. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of von Willebrand factor binding to platelets. Blood 1993;81(5):1263–1276.
  • Watson SP, Auger JM, McCarty OJT, Pearce AC. GPVI and integrin αIIbβ3 signaling in platelets. J Thromb Haemost 2005;3(8):1752–1762.
  • Ruggeri ZM. Platelets in atherothrombosis. Nat Med 2002;8(11):1227–1234.
  • Yago T, Lou J, Wu T, Yang J, Miner JJ, Coburn L, López JA, Cruz MA, Dong J-F, McIntire LV, et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J Clin Invest 2008;118(9):3195–3207.
  • Zwaginga JJ, Sixma JJ, de Groot PG. Activation of endothelial cells induces platelet thrombus formation on their matrix. Studies of new in vitro thrombosis model with low molecular weight heparin as anticoagulant. Arteriosclerosis (Dallas, Tex.) 1990;10(1):49–61.
  • Blann A. von Willebrand factor and the endothelium in vascular disease. Br J Biomed Sci 1993;50(2):125–134.
  • Dong J, Moake JL, Nolasco L, Bernardo A, Arceneaux W, Shrimpton CN, Schade AJ, McIntire LV, Fujikawa K, López JA. ADAMTS-13 rapidly cleaves newly secreted ultralarge von Willebrand factor multimers on the endothelial surface under flowing conditions. Blood 2002;100(12):4033–4039.
  • Dong J, Moake JL, Bernardo A, Fujikawa K, Ball C, Nolasco L, López JA, Cruz MA. ADAMTS-13 metalloprotease interacts with the endothelial cell-derived ultra-large von Willebrand factor. J Biol Chem 2003;278(32):29633–29639.
  • South K, Luken BM, Crawley JTB, Phillips R, Thomas M, Collins RF, Deforche L, Vanhoorelbeke K, Lane DA. Conformational activation of ADAMTS13. Proc Natl Acad Sci 2014;111(52):18578–18583.
  • McCarty OJT, Conley RB, Shentu W, Tormoen GW, Zha D, Xie A, Qi Y, Zhao Y, Carr C, Belcik T, et al. Molecular imaging of activated von Willebrand factor to detect high-risk atherosclerotic phenotype. JACC Cardiovasc Imaging 2010;3(9):947–955.
  • Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K. Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat Med 2003;9(1):61–67.
  • Theilmeier G, Michiels C, Spaepen E, Vreys I, Collen D, Vermylen J, Hoylaerts MF. Endothelial von Willebrand factor recruits platelets to atherosclerosis-prone sites in response to hypercholesterolemia. Blood 2002;99(12):4486–4493.
  • Hsu PP, Li S, Li YS, Usami S, Ratcliffe A, Wang X, Chien S. Effects of flow patterns on endothelial cell migration into a zone of mechanical denudation. Biochem Biophys Res Commun 2001;285(3):751–759.
  • Chiu JJ, Wang DL, Chien S, Skalak R, Usami S. Effects of disturbed flow on endothelial cells. J Biomech Eng 1998;120(1):2–8.
  • Colace TV, Tormoen GW, McCarty OJT, Diamond SL. Microfluidics and coagulation biology. Annu Rev Biomed Eng 2013;15:283–303.
  • Walsh TG, Murphy RP, Fitzpatrick P, Rochfort KD, Guinan AF, Murphy A, Cummins PM. Stabilization of brain microvascular endothelial barrier function by shear stress involves VE-cadherin signaling leading to modulation of pTyr-occludin levels. J Cell Physiol 2011;226(11):3053–3063.
  • Prabhakarpandian B, Shen M-C, Pant K, Kiani MF. Microfluidic devices for modeling cell-cell and particle-cell interactions in the microvasculature. Microvasc Res 2011;82(3):210–220.
  • Chiu J-J, Chien S. Effects of Disturbed Flow on Vascular Endothelium: Pathophysiological Basis and Clinical Perspectives. Physiol Rev 2011;91(1):327–387.
  • Halldorsson S, Lucumi E, Gómez-Sjöberg R, Fleming RMT. Advantages and challenges of microfluidic cell culture in polydimethylsiloxane devices. Biosens Bioelectron 2015;63:218–231.
  • Whitesides GM, Stroock AD. Flexible methods for microfluidics. Phys Today 2001;54(6):42–48.
  • Duffy DC, McDonald JC, Schueller OJ, Whitesides GM. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Anal Chem 1998;70(23):4974–4984.
  • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442(7101):368–373.
  • Berthier E, Young EWK, Beebe D. Engineers are from PDMS-land, Biologists are from Polystyrenia. Lab Chip 2012;12(7):1224–1237.
  • Sia SK, Whitesides GM. Microfluidic devices fabricated in poly(dimethylsiloxane) for biological studies. Electrophoresis 2003;24(21):3563–3576.
  • McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 2000;21(1):27–40.
  • Han H-C, Chesnutt JKW, Garcia JR, Liu Q, Wen Q. Artery buckling: New phenotypes, models, and applications. Ann Biomed Eng 2013;41(7):1399–1410.
  • Raj A, Sen AK. Flow-induced deformation of compliant microchannels and its effect on pressure–flow characteristics. Microfluid Nanofluid 2016;20(2); DOI:10.1007/s10404-016-1702-9
  • Gervais T, El-Ali J, Günther A, Jensen KF. Flow-induced deformation of shallow microfluidic channels. Lab Chip 2006;6(4):500–507.
  • Li M, Ku DN, Forest CR. Microfluidic system for simultaneous optical measurement of platelet aggregation at multiple shear rates in whole blood. Lab Chip 2012;12(7):1355–1362.
  • Colace TV, Diamond SL. Direct observation of von Willebrand factor elongation and fiber formation on collagen during acute whole blood exposure to pathological flow. Arteriosclerosis Thromb Vasc Biol 2013;33(1):105–113.
  • Westein E, van der Meer AD, Kuijpers MJE, Frimat J-P, van den Berg A, Heemskerk JWM. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci USA 2013;110(4):1357–1362.
  • Jain A, van der Meer AD, Papa A-L, Barrile R, Lai A, Schlechter BL, Otieno MA, Louden CS, Hamilton GA, Michelson AD, et al. Assessment of whole blood thrombosis in a microfluidic device lined by fixed human endothelium. Biomed Microdevices 2016;18(4); PMID: 27464497.
  • Bao J, Xiao J, Mao Y, Zheng XL. Carboxyl terminus of ADAMTS13 directly inhibits platelet aggregation and ultra large von Willebrand factor string formation under flow in a free-thiol-dependent manner. Arteriosclerosis Thromb Vasc Biol 2014;34(2):397–407.
  • Zhang P, Pan W, Rux AH, Sachais BS, Zheng XL. The cooperative activity between the carboxyl-terminal TSP1 repeats and the CUB domains of ADAMTS13 is crucial for recognition of von Willebrand factor under flow. Blood 2007;110(6):1887–1894.
  • Neeves KB, Maloney SF, Fong KP, Schmaier AA, Kahn ML, Brass LF, Diamond SL. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J Thromb Haemost 2008;6(12):2193–2201.
  • De Silva MN, Desai R, Odde DJ. Micro-patterning of animal cells on PDMS substrates in the presence of serum without use of adhesion inhibitors. Biomed Microdevices 2004;6(3):219–222.
  • Tseng P-Y, Rele SS, Sun X-L, Chaikof EL. Membrane-mimetic films containing thrombomodulin and heparin inhibit tissue factor-induced thrombin generation in a flow model. Biomaterials 2006;27(12):2637–2650.
  • Hansen RR, Wufsus AR, Barton ST, Onasoga AA, Johnson-Paben RM, Neeves KB. High content evaluation of shear dependent platelet function in a microfluidic flow assay. Ann Biomed Eng 2013;41(2):250–262.
  • Sylman JL, Artzer DT, Rana K, Neeves KB. A vascular injury model using focal heat-induced activation of endothelial cells. Integr Biol 2015;7(7):801–814.
  • Peters K, Unger RE, Brunner J, Kirkpatrick CJ. Molecular basis of endothelial dysfunction in sepsis. Cardiovasc Res 2003;60(1):49–57.
  • Chrobak KM, Potter DR, Tien J. Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 2006;71(3):185–196.
  • Bogorad MI, DeStefano J, Karlsson J, Wong AD, Gerecht S, Searson PC. Review: in vitro microvessel models. Lab Chip 2015;15(22):4242–4255.
  • Wong AD, Searson PC. Live-cell imaging of invasion and intravasation in an artificial microvessel platform. Cancer Res 2014;74(17):4937–4945.
  • Wong AD, Ye M, Levy AF, Rothstein JD, Bergles DE, Searson PC. The blood-brain barrier: an engineering perspective. Front Neuroeng 2013;6:7; PMID: 24009582.
  • Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, López JA, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA 2012;109(24):9342–9347.
  • Wirtz D, Konstantopoulos K, Searson PC. The physics of cancer: the role of physical interactions and mechanical forces in metastasis. Nat Rev Cancer 2011;11(7):512–522.
  • Ed Rainger G, Chimen M, Harrison MJ, Yates CM, Harrison P, Watson SP, Lordkipanidzé M, Nash GB. The role of platelets in the recruitment of leukocytes during vascular disease. Platelets 2015;26(6):507–520.
  • Price GM, Wong KHK, Truslow JG, Leung AD, Acharya C, Tien J. Effect of mechanical factors on the function of engineered human blood microvessels in microfluidic collagen gels. Biomaterials 2010;31(24):6182–6189.
  • Ye M, Sanchez HM, Hultz M, Yang Z, Bogorad M, Wong AD, Searson PC. Brain microvascular endothelial cells resist elongation due to curvature and shear stress. Sci Rep 2014;4.
  • Fogelson AL, Neeves KB. Fluid Mechanics of Blood Clot Formation. Annu Rev Fluid Mech 2015;47:377–403.
  • Zilberman-Rudenko J, Itakura A, Maddala J, Baker-Groberg SM, Vetter R, Tucker EI, Gruber A, Gerdes C, McCarty OJT. Biorheology of platelet activation in the bloodstream distal to thrombus formation. Cell Mol Bioeng 2016;9(34):1–13.
  • Zilberman-Rudenko J, Sylman JL, Lakshmanan HHS, McCarty OJT, Maddala J. Dynamics of blood flow and thrombus formation in a multi-bypass microfluidic ladder network. Cell Mol Bioeng 2016 In press; DOI:10.1007/s12195-016-0470-7.
  • Davies PF. Flow-mediated endothelial mechanotransduction. Physiol Rev 1995;75(3):519–560.
  • Davies PF. Hemodynamic shear stress and the endothelium in cardiovascular pathophysiology. Nat Clin Pract Cardiovasc Med 2009;6(1):16–26.
  • Cheng C, Tempel D, van Haperen R, van der Baan A, Grosveld F, Daemen MJAP, Krams R, de Crom R. Atherosclerotic lesion size and vulnerability are determined by patterns of fluid shear stress. Circulation 2006;113(23):2744–2753.
  • Mannino RG, Myers DR, Ahn B, Wang Y, Margo Rollins, Gole H, Lin AS, Guldberg RE, Giddens DP, Timmins LH, et al. Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions. Sci Rep 2015;5:12401.
  • Khan OF, Sefton MV. Endothelial cell behaviour within a microfluidic mimic of the flow channels of a modular tissue engineered construct. Biomed Microdevices 2011;13(1):69–87.
  • Zheng Y, Chen J, López JA. Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nat Commun 2015;6:7858.
  • Zheng Y, Chen J, López JA. Microvascular platforms for the study of platelet-vessel wall interactions. Thromb Res 2014;133(4):525–531.
  • Holme PA, Orvim U, Hamers MJ, Solum NO, Brosstad FR, Barstad RM, Sakariassen KS. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arteriosclerosis Thromb Vasc Biol 1997;17(4):646–653.
  • Tsai J-C, Lin Y-W, Huang C-Y, Lin C-Y, Tsai Y-T, Shih C-M, Lee C-Y, Chen Y-H, Li C-Y, Chang N-C, et al. The role of calpain-myosin 9-Rab7b pathway in mediating the expression of Toll-like receptor 4 in platelets: a novel mechanism involved in α-granules trafficking. PloS One 2014;9(1):e85833.
  • Hoganson DM, Pryor II HI, Bassett EK, Spool ID, Vacanti JP. Lung assist device technology with physiologic blood flow developed on a tissue engineered scaffold platform. Lab Chip 2011;11(4):700–707.
  • Zheng Y, Roberts MA. Tissue engineering: Scalable vascularized implants. Nat Mater 2016;15(6):597–599.
  • Roberts MA, Tran D, Coulombe KLK, Razumova M, Regnier M, Murry CE, Zheng Y. Stromal cells in dense collagen promote cardiomyocyte and microvascular patterning in engineered human heart tissue. Tissue Eng Part A 2016;22(7–8):633–644.
  • Park J, Li Y, Berthiaume F, Toner M, Yarmush ML, Tilles AW. Radial flow hepatocyte bioreactor using stacked microfabricated grooved substrates. Biotechnol Bioeng 2008;99(2):455–467.
  • Wang JD, Douville NJ, Takayama S, ElSayed M. Quantitative analysis of molecular absorption into PDMS microfluidic channels. Ann Biomed Eng 2012;40(9):1862–1873.
  • Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature 2014;507(7491):181–189.
  • McCarty OJT, Ku D, Sugimoto M, King MR, Cosemans JMEM, Neeves KB, Subcommittee on Biorheology. Dimensional analysis and scaling relevant to flow models of thrombus formation: communication from the SSC of the ISTH. J Thromb Haemost 2016;14(3):619–622.
  • Zwaginga JJ, Sakariassen KS, Nash G, King MR, Heemskerk JW, Frojmovic M, Hoylaerts MF, Biorheology Subcommittee of the SSC of the Isth. Flow-based assays for global assessment of hemostasis. Part 2: current methods and considerations for the future. J Thromb Haemost 2006;4(12):2716–2717.
  • Chung DW, Chen J, Ling M, Fu X, Blevins T, Parsons S, Le J, Harris J, Martin TR, Konkle BA, et al. High-density lipoprotein modulates thrombosis by preventing von Willebrand factor self-association and subsequent platelet adhesion. Blood 2016;127(5):637–645.
  • Glaser CB, Morser J, Clarke JH, Blasko E, McLean K, Kuhn I, Chang RJ, Lin JH, Vilander L, Andrews WH, et al. Oxidation of a specific methionine in thrombomodulin by activated neutrophil products blocks cofactor activity. A potential rapid mechanism for modulation of coagulation. J Clin Invest 1992;90(6):2565–2573.
  • Prieto JH, Sampoli Benitez BA, Melacini G, Johnson DA, Wood MJ, Komives EA. Dynamics of the fragment of thrombomodulin containing the fourth and fifth epidermal growth factor-like domains correlate with function. Biochemistry 2005;44(4):1225–1233.
  • Kaneider NC, Egger P, Dunzendorfer S, Noris P, Balduini CL, Gritti D, Ricevuti G, Wiedermann CJ. Reversal of thrombin-induced deactivation of CD39/ATPDase in endothelial cells by HMG-CoA reductase inhibition effects on Rho-GTPase and adenosine nucleotide metabolism. Arteriosclerosis Thromb Vasc Biol 2002;22(6):894–900.
  • Gu SX, Stevens JW, Lentz SR. Regulation of thrombosis and vascular function by protein methionine oxidation. Blood 2015;125(25):3851–3859.
  • Dayal S, Wilson KM, Motto DG, Miller FJ, Chauhan AK, Lentz SR. Hydrogen peroxide promotes aging-related platelet hyperactivation and thrombosis. Circulation 2013;127(12):1308–1316.
  • Kirchhofer D, Tschopp TB, Hadváry P, Baumgartner HR. Endothelial cells stimulated with tumor necrosis factor-alpha express varying amounts of tissue factor resulting in inhomogenous fibrin deposition in a native blood flow system. Effects of thrombin inhibitors. J Clin Invest 1994;93(5):2073–2083.
  • Sato N, Beitz JG, Kato J, Yamamoto M, Clark JW, Calabresi P, Raymond A, Frackelton AR. Platelet-derived growth factor indirectly stimulates angiogenesis in vitro. Am J Pathol 1993;142(4):1119–1130.
  • Slungaard A, Fernandez JA, Griffin JH, Key NS, Long JR, Piegors DJ, Lentz SR. Platelet factor 4 enhances generation of activated protein C in vitro and in vivo. Blood 2003;102(1):146–151.
  • Nash GF, Turner LF, Scully MF, Kakkar AK. Platelets and cancer. Lancet Oncol 2002;3(7):425–430.
  • Baimukanova G, Miyazawa B, Potter DR, Muench MO, Bruhn R, Gibb SL, Spinella PC, Cap AP, Cohen MJ, Pati S. Platelets regulate vascular endothelial stability: assessing the storage lesion and donor variability of apheresis platelets. Transfusion 2016;56:S65–S75.
  • Nieswandt B, Hafner M, Echtenacher B, Männel DN. Lysis of tumor cells by natural killer cells in mice is impeded by platelets. Cancer Res 1999;59(6):1295–1300.
  • Palumbo JS, Talmage KE, Massari JV, La Jeunesse CM, Flick MJ, Kombrinck KW, Jirousková M, Degen JL. Platelets and fibrin(ogen) increase metastatic potential by impeding natural killer cell-mediated elimination of tumor cells. Blood 2005;105(1):178–185.
  • Helmlinger G, Geiger RV, Schreck S, Nerem RM. Effects of pulsatile flow on cultured vascular endothelial cell morphology. J Biomech Eng 1991;113(2):123–131.
  • Lamberti G, Soroush F, Smith A, Kiani MF, Prabhakarpandian B, Pant K. Adhesion patterns in the microvasculature are dependent on bifurcation angle. Microvasc Res 2015;99:19–25.
  • Tsai M, Kita A, Leach J, Rounsevell R, Huang JN, Moake J, Ware RE, Fletcher DA, Lam WA. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin Invest 2012;122(1):408–418.
  • Wick TM, Moake JL, Udden MM, Eskin SG, Sears DA, McIntire LV. Unusually large von Willebrand factor multimers increase adhesion of sickle erythrocytes to human endothelial cells under controlled flow. J Clin Invest 1987;80(3):905–910.
  • Ruel J, Lemay J, Dumas G, Doillon C, Charara J. Development of a parallel plate flow chamber for studying cell behavior under pulsatile flow. ASAIO J (Am Soc Artif Internal Organs 1992) 1995;41(4):876–883.
  • Rabiet MJ, Plantier JL, Rival Y, Genoux Y, Lampugnani MG, Dejana E. Thrombin-induced increase in endothelial permeability is associated with changes in cell-to-cell junction organization. Arteriosclerosis Thromb Vasc Biol 1996;16(3):488–496.
  • Schulz B, Pruessmeyer J, Maretzky T, Ludwig A, Blobel CP, Saftig P, Reiss K. ADAM10 regulates endothelial permeability and T-cell transmigration by proteolysis of vascular endothelial cadherin. Circ Res 2008;102(10):1192–1201.
  • Delvaeye M, Conway EM. Coagulation and innate immune responses: can we view them separately? Blood 2009;114(12):2367–2374.
  • Coughlin SR. Thrombin signalling and protease-activated receptors. Nature 2000;407(6801):258–264.
  • Neeves KB, Illing DAR, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J 2010;98(7):1344–1352.
  • Zilberman-Rudenko J, Itakura A, Wiesenekker CP, Vetter R, Maas C, Gailani D, Tucker EI, Gruber A, Gerdes C, McCarty OJT. Coagulation factor XI promotes distal platelet activation and single platelet consumption in the bloodstream under shear flow. Arteriosclerosis Thromb Vasc Biol 2016 Jan 14.
  • Tucker EI, Marzec UM, White TC, Hurst S, Rugonyi S, McCarty OJT, Gailani D, Gruber A, Hanson SR. Prevention of vascular graft occlusion and thrombus-associated thrombin generation by inhibition of factor XI. Blood 2009;113(4):936–944.
  • Gruber A, Hanson SR. Factor XI–dependence of surface- and tissue factor–initiated thrombus propagation in primates. Blood 2003;102(3):953–955.
  • Gailani D, Bane CE, Gruber A. Factor XI and contact activation as targets for antithrombotic therapy. J Thromb Haemost 2015 May 14.
  • Jackson SP, Schoenwaelder SM. Antiplatelet therapy: in search of the “magic bullet.” Nat Rev Drug Discovery 2003;2(10):775–789.
  • Berny MA, White TC, Tucker EI, Bush-Pelc LA, Di Cera E, Gruber A, McCarty OJT. Thrombin mutant W215A/E217A acts as a platelet GPIb antagonist. Arteriosclerosis Thromb Vasc Biol 2008;28(2):329–334.
  • Verbout NG, Yu X, Healy LD, Phillips KG, Tucker EI, Gruber A, McCarty OJT, Offner H. Thrombin mutant W215A/E217A treatment improves neurological outcome and attenuates central nervous system damage in experimental autoimmune encephalomyelitis. Metab Brain Dis 2015;30(1):57–65.
  • Puy C, Tucker EI, Wong ZC, Gailani D, Smith SA, Choi SH, Morrissey JH, Gruber A, McCarty OJT. Factor XII promotes blood coagulation independent of factor XI in the presence of long-chain polyphosphates. J Thromb Haemost 2013;11(7):1341–1352.
  • Matafonov A, Leung PY, Gailani AE, Grach SL, Puy C, Cheng Q, Sun M -f., McCarty OJT, Tucker EI, Kataoka H, et al. Factor XII inhibition reduces thrombus formation in a primate thrombosis model. Blood 2014;123(11):1739–1746.
  • Puy C, Tucker EI, Matafonov A, Cheng Q, Zientek KD, Gailani D, Gruber A, McCarty OJT. Activated factor XI increases the procoagulant activity of the extrinsic pathway by inactivating tissue factor pathway inhibitor. Blood 2015;125(9):1488–1496.
  • Puy C, Rigg RA, McCarty OJT. The hemostatic role of factor XI. Thromb Res 2016;141(Suppl 2):S8–S11.
  • Gailani D, Gruber A. Factor XI as a Therapeutic Target. Arteriosclerosis Thromb Vasc Biol 2016;36(7):1316–1322.
  • Cranmer SL, Ulsemer P, Cooke BM, Salem HH, de la Salle C, Lanza F, Jackson SP. Glycoprotein (GP) Ib-IX-transfected cells roll on a von Willebrand factor matrix under flow. Importance of the GPib/actin-binding protein (ABP-280) interaction in maintaining adhesion under high shear. J Biol Chem 1999;274(10):6097–6106.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.