697
Views
26
CrossRef citations to date
0
Altmetric
Special Review Section: Utility and Development of Microfluidic Platforms for Platelet Research

Application of microfluidic devices in studies of thrombosis and hemostasis

&
Pages 434-440 | Received 30 Jan 2017, Accepted 05 Apr 2017, Published online: 05 Jun 2017

References

  • Enderle J, Blanchard S, Bronzino J. Cardiovascular mechanics. In: J. Bronzino (ed.), Introduction to biomedical engineering. San Diego, CA: Academic Press; 2000. pp. 467–535.
  • Gogia S, Neelamegham S. Role of fluid shear stress in regulating VWF structure, function and related blood disorders. Biorheology 2015;52(5–6):319–335.
  • Jackson SP. Arterial thrombosis–insidious, unpredictable and deadly. Nat Med 2011;17(11):1423–1436.
  • Bagot CN, Arya R. Virchow and his triad: a question of attribution. Br J Haematol 2008;143(2):180–190.
  • Pugh N, et al. Dynamic analysis of platelet deposition to resolve platelet adhesion receptor activity in whole blood at arterial shear rate. Platelets 2015;26(3):216–219.
  • Savage B, Almus-Jacobs F, Ruggeri ZM. Specific synergy of multiple substrate-receptor interactions in platelet thrombus formation under flow. Cell 1998;94(5):657–666.
  • Prabhakarpandian B, et al. Expression and functional significance of adhesion molecules on cultured endothelial cells in response to ionizing radiation. Microcirculation 2001;8(5):355–364.
  • Crutchfield KL, et al. CD11b/CD18-coated microspheres attach to E-selectin under flow. J Leukoc Biol 2000;67(2):196–205.
  • Alevriadou BR, et al. Real-time analysis of shear-dependent thrombus formation and its blockade by inhibitors of vonwillebrand-factor binding to platelets. Blood 1993;81(5):1263–1276.
  • Whitesides GM. The origins and the future of microfluidics. Nature 2006;442(7101):368–373.
  • Baumgartner HR. The role of blood flow in platelet adhesion, fibrin deposition, and formation of mural thrombi. Microvasc Res 1973;5(2):167–179.
  • Savage B, Saldivar E, Ruggeri ZM. Initiation of platelet adhesion by arrest onto fibrinogen or translocation on von Willebrand factor. Cell 1996;84(2):289–297.
  • Nascimbene A, et al. Acquired von Willebrand syndrome associated with left ventricular assist device. Blood 2016;127(25):3133–3141.
  • Flood VH, et al. Crucial role for the VWF A1 domain in binding to type IV collagen. Blood 2015;125(14):2297–2304.
  • Moroi M, et al. Analysis of the involvement of the von Willebrand factor-glycoprotein Ib interaction in platelet adhesion to a collagen-coated surface under flow conditions. Blood 1997;90(11):4413–4424.
  • Zhang Y, Neelamegham S. Estimating the efficiency of cell capture and arrest in flow chambers: study of neutrophil binding via E-selectin and ICAM-1. Biophys J 2002;83(4):1934–1952.
  • Doggett TA, et al. Alterations in the intrinsic properties of the GPIbalpha-VWF tether bond define the kinetics of the platelet-type von Willebrand disease mutation, Gly233Val. Blood 2003;102(1):152–160.
  • Yago T, et al. Platelet glycoprotein Ibalpha forms catch bonds with human WT vWF but not with type 2B von Willebrand disease vWF. J Clin Invest 2008;118(9):3195–3207.
  • Madabhushi SR, et al. von Willebrand factor (VWF) propeptide binding to VWF D’D3 domain attenuates platelet activation and adhesion. Blood 2012;119(20):4769–4778.
  • Madabhushi SR, et al. Platelet GpIba binding to von Willebrand Factor under fluid shear: contributionsof the D’D3-domain, A1-domain flanking peptide and O-linked glycans. J Am Heart Assoc 2014;3(5):e001420.
  • Aponte-Santamaria C, et al. Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. Biophys J 2015;108(9):2312–2321.
  • Nesbitt WS, et al. Distinct glycoprotein Ib/V/IX and integrin alpha IIbbeta 3-dependent calcium signals cooperatively regulate platelet adhesion under flow. J Biol Chem 2002;277(4):2965–2972.
  • Dayananda KM, et al. von Willebrand factor self-association on platelet GpIbalpha under hydrodynamic shear: effect on shear-induced platelet activation. Blood 2010;116(19):3990–3998.
  • Shankaran H, Alexandridis P, Neelamegham S. Aspects of hydrodynamic shear regulating shear-induced platelet activation and self-association of von Willebrand factor in suspension. Blood 2003;101(7):2637–2645.
  • Kasirer-Friede A, et al. Signaling through GP Ib-IX-V activates alpha IIb beta 3 independently of other receptors. Blood 2004;103(9):3403–3411.
  • Ruggeri ZM, et al. Platelets have more than one binding site for von Willebrand factor. J Clin Invest 1983;72(1):1–12.
  • Ruggeri ZM, et al. Activation-independent platelet adhesion and aggregation under elevated shear stress. Blood 2006;108(6):1903–1910.
  • Nesbitt WS, et al. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med 2009;15(6):665–673.
  • Westein E, et al. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci U S A 2013;110(4):1357–1362.
  • Flaumenhaft R. Formation and fate of platelet microparticles. Blood Cells Mol Dis 2006;36(2):182–187.
  • Muller I, et al. Intravascular tissue factor initiates coagulation via circulating microvesicles and platelets. Faseb J 2003;17(3):476–478.
  • Holme PA, et al. Shear-induced platelet activation and platelet microparticle formation at blood flow conditions as in arteries with a severe stenosis. Arterioscler Thromb Vasc Biol 1997;17(4):646–653.
  • Shankaran H, Neelamegham S. Hydrodynamic forces applied on intercellular bonds, soluble molecules, and cell-surface receptors. Biophys J 2004; 86 (1 Pt 1): 576–588.
  • Tynngard N, Lindahl TL, Ramstrom S. Assays of different aspects of haemostasis - what do they measure? Thromb J 2015;13:8.
  • Casa LD, Ku DN. Geometric design of microfluidic chambers: platelet adhesion versus accumulation. Biomed Microdevices 2014;16(1):115–126.
  • Runyon MK, et al. Effects of shear rate on propagation of blood clotting determined using microfluidics and numerical simulations. J Am Chem Soc 2008;130(11):3458–3464.
  • Kroll MH, et al. Platelets and shear stress. Blood 1996;88(5):1525–1541.
  • Neeves KB, Illing DA, Diamond SL. Thrombin flux and wall shear rate regulate fibrin fiber deposition state during polymerization under flow. Biophys J 2010;98(7):1344–1352.
  • Brzoska T, et al. Binding of thrombin-activated platelets to a fibrin scaffold through alpha(IIb)beta(3) evokes phosphatidylserine exposure on their cell surface. Plos One 2013;8(2):e55466.
  • Wolberg AS, Campbell RA. Thrombin generation, fibrin clot formation and hemostasis. Transfus Apher Sci 2008;38(1):15–23.
  • Osdoit S, Rosa JP. Fibrin clot retraction by human platelets correlates with alpha(IIb)beta(3) integrin-dependent protein tyrosine dephosphorylation. J Biol Chem 2001;276(9):6703–6710.
  • Wu KK, Thiagarajan P. Role of endothelium in thrombosis and hemostasis. Annu Rev Med 1996;47:315–331.
  • Colace TV, et al. Microfluidic assay of hemophilic blood clotting: distinct deficits in platelet and fibrin deposition at low factor levels. J Thromb Haemost 2014;12(2):147–158.
  • De Witt SM, et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat Commun 2014;5:4257.
  • Ogawa S, et al. Evaluation of a novel flow chamber system to assess clot formation in factor VIII-deficient mouse and anti-factor IXa-treated human blood. Haemophilia 2012;18(6):926–932.
  • Onasoga-Jarvis AA, et al. The effect of factor VIII deficiencies and replacement and bypass therapies on thrombus formation under venous flow conditions in microfluidic and computational models. Plos One 2013;(11):e78732.
  • Sugimoto M, et al. Mural thrombus generation in type 2A and 2B von Willebrand disease under flow conditions. Blood 2003;101(3):915–920.
  • Brehm MA, et al. von Willebrand disease type 2A phenotypes IIC, IID and IIE: A day in the life of shear-stressed mutant von Willebrand factor. Thromb Haemost 2014;112(1):96–108.
  • Zwaginga JJ, et al. Can blood flow assays help to identify clinically relevant differences in von Willebrand factor functionality in von Willebrand disease types 1–3? J Thromb Haemost 2007;5(12):2547–2549.
  • Jain A, et al. A shear gradient-activated microfluidic device for automated monitoring of whole blood haemostasis and platelet function. Nat Commun 2016;7:10176.
  • Roest M, et al. Flow chamber-based assays to measure thrombus formation in vitro: requirements for standardization. J Thromb Haemost 2011;9(11):2322–2324.
  • Gutierrez E, et al. Microfluidic devices for studies of shear-dependent platelet adhesion. Lab Chip 2008;8(9):1486–1495.
  • Song H, et al. On-chip titration of an anticoagulant argatroban and determination of the clotting time within whole blood or plasma using a plug-based microfluidic system. Anal Chem 2006;78(14):4839–4849.
  • Jeon JS, et al. Generation of 3D functional microvascular networks with human mesenchymal stem cells in microfluidic systems. Integr Biol (Camb) 2014;6(5):555–563.
  • Zheng Y, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci U S A 2012;109(24):9342–9347.
  • Zheng Y, Chen J, Lopez JA. Flow-driven assembly of VWF fibres and webs in in vitro microvessels. Nat Commun 2015;6:7858.
  • Tsai M, et al. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin Invest 2012;122(1):408–418.
  • Cai L, Friedman N, Xie XS. Stochastic protein expression in individual cells at the single molecule level. Nature 2006;440(7082):358–362.
  • Theberge AB, et al. Microdroplets in microfluidics: an evolving platform for discoveries in chemistry and biology. Angew Chem Int Ed Engl 2010;49(34):5846–5868.
  • Kline TR, et al. ABO, D blood typing and subtyping using plug-based microfluidics. Anal Chem 2008;80(16):6190–6197.
  • Sullenbarger B, et al. Prolonged continuous in vitro human platelet production using three-dimensional scaffolds. Exp Hematol 2009;37(1):101–110.
  • Thon JN, et al. Platelet bioreactor-on-a-chip. Blood 2014;124(12):1857–1867.
  • Di Buduo CA, et al. Programmable 3D silk bone marrow niche for platelet generation ex vivo and modeling of megakaryopoiesis pathologies. Blood 2015;125(14):2254–2264

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.