468
Views
10
CrossRef citations to date
0
Altmetric
Special Review: Platelets at the Heart of Therapy

Challenges on the diagnostic approach of inherited platelet function disorders: Is a paradigm change necessary?

, &
Pages 148-155 | Received 01 Feb 2017, Accepted 05 Jul 2017, Published online: 01 Nov 2017

References

  • Paniccia R, Priora R, Liotta AA, Abbate R. Platelet function tests: A comparative review. Vasc Health Risk Manag 2015;11:133–148.
  • Ware J, Corken A, Khetpal R. Platelet function beyond hemostasis and thrombosis. Curr Opin Hematol 2013;20(5):451–456.
  • Lisman T, Porte RJ. Mechanisms of platelet-mediated liver regeneration. Blood 2016;128(5):625–629.
  • Shen YM, Frenkel EP. Acquired platelet dysfunction. Hematol Oncol Clin North Am 2007;21(4):647–61, vi.
  • Antithrombotic Trialists C. Collaborative meta-analysis of randomised trials of antiplatelet therapy for prevention of death, myocardial infarction, and stroke in high risk patients. Bmj 2002;324(7329):71–86.
  • Schomig A, Neumann FJ, Kastrati A, Schuhlen H, Blasini R, Hadamitzky M, et al. A randomized comparison of antiplatelet and anticoagulant therapy after the placement of coronary-artery stents. N Engl J Med 1996;334(17):1084–1089.
  • Lipinski MJ, Lee RC, Gaglia MA Jr., Torguson R, Garcia-Garcia HM, Pichard AD, et al. Comparison of heparin, bivalirudin, and different glycoprotein IIb/IIIa inhibitor regimens for anticoagulation during percutaneous coronary intervention: A network meta-analysis. Cardiovasc Revasc Med 2016;17(8):535–545.
  • Briasoulis A, Telila T, Palla M, Siasos G, Tousoulis D. P2Y12 Receptor Antagonists: Which One to Choose? A Systematic Review and Meta-Analysis. Curr Pharm Des 2016;22(29):4568–4576.
  • Sanchez-Guiu I, Anton AI, Padilla J, Velasco F, Lucia JF, Lozano M, et al. Functional and molecular characterization of inherited platelet disorders in the Iberian Peninsula: Results from a collaborative study. Orphanet J Rare Dis 2014;9:213.
  • Gresele P. Subcommittee on Platelet Physiology of the International Society on T, Hemostasis. Diagnosis of inherited platelet function disorders: guidance from the SSC of the ISTH. J Thromb Haemost 2015;13(2):314–322.
  • Israels SJ, Kahr WH, Blanchette VS, Luban NL, Rivard GE, Rand ML. Platelet disorders in children: A diagnostic approach. Pediatr Blood Cancer 2011;56(6):975–983.
  • Boender J, Kruip MJ, Leebeek FW. A diagnostic approach to mild bleeding disorders. J Thromb Haemost 2016;14(8):1507–1516.
  • Gresele P, Harrison P, Bury L, Falcinelli E, Gachet C, Hayward CP, et al. Diagnosis of suspected inherited platelet function disorders: Results of a worldwide survey. J Thromb Haemost 2014;12(9):1562–1569.
  • Gupta PK, Charan VD, Saxena R. Spectrum of Von Willebrand disease and inherited platelet function disorders amongst Indian bleeders. Ann Hematol 2007;86(6):403–407.
  • Quiroga T, Goycoolea M, Panes O, Aranda E, Martinez C, Belmont S, et al. High prevalence of bleeders of unknown cause among patients with inherited mucocutaneous bleeding. A prospective study of 280 patients and 299 controls. Haematologica 2007;92(3):357–365.
  • Hayward CP, Pai M, Liu Y, Moffat KA, Seecharan J, Webert KE, et al. Diagnostic utility of light transmission platelet aggregometry: results from a prospective study of individuals referred for bleeding disorder assessments. J Thromb Haemost 2009;7(4):676–684.
  • Songdej N, Rao AK. Inherited platelet dysfunction and hematopoietic transcription factor mutations. Platelets 2017;28(1):20–26.
  • Pecci A, Klersy C, Gresele P, Lee KJ, De Rocco D, Bozzi V, et al. MYH9-related disease: A novel prognostic model to predict the clinical evolution of the disease based on genotype-phenotype correlations. Hum Mutat 2014;35(2):236–247.
  • Dawood BB, Lowe GC, Lordkipanidze M, Bem D, Daly ME, Makris M, et al. Evaluation of participants with suspected heritable platelet function disorders including recommendation and validation of a streamlined agonist panel. Blood 2012;120(25):5041–5049.
  • Harrison P, Mackie I, Mumford A, Briggs C, Liesner R, Winter M, et al. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br J Haematol 2011;155(1):30–44.
  • Savoia A, Kunishima S, De Rocco D, Zieger B, Rand ML, Pujol-Moix N, et al. Spectrum of the mutations in Bernard-Soulier syndrome. Hum Mutat 2014;35(9):1033–1045.
  • Poon MC, Di Minno G, d’Oiron R, Zotz R. New Insights Into the Treatment of Glanzmann Thrombasthenia. Transfus Med Rev 2016;30(2):92–99.
  • Saposnik B, Binard S, Fenneteau O, Nurden A, Nurden P, Hurtaud-Roux MF, et al. Mutation spectrum and genotype-phenotype correlations in a large French cohort of MYH9-Related Disorders. Mol Genet Genomic Med 2014;2(4):297–312.
  • Born GV. Aggregation of blood platelets by adenosine diphosphate and its reversal. Nature 1962;194:927–929.
  • Cattaneo M, Cerletti C, Harrison P, Hayward CP, Kenny D, Nugent D, et al. Recommendations for the Standardization of Light Transmission Aggregometry: A Consensus of the Working Party from the Platelet Physiology Subcommittee of SSC/ISTH. J Thromb Haemost 2013;11(6):1183–1189.
  • Hayward CP, Moffat KA, Raby A, Israels S, Plumhoff E, Flynn G, et al. Development of North American consensus guidelines for medical laboratories that perform and interpret platelet function testing using light transmission aggregometry. Am J Clin Pathol 2010;134(6):955–963.
  • Stissing T, Dridi NP, Ostrowski SR, Bochsen L, Johansson PI. The influence of low platelet count on whole blood aggregometry assessed by Multiplate. Clin Appl Thromb Hemost 2011;17(6):E211–7.
  • Hayward CP, Moffat KA, Pai M, Liu Y, Seecharan J, McKay H, et al. An evaluation of methods for determining reference intervals for light transmission platelet aggregation tests on samples with normal or reduced platelet counts. Thromb Haemost 2008;100(1):134–145.
  • Stevens RF, Meyer S. Fanconi and Glanzmann: The men and their works. Br J Haematol 2002;119(4):901–904.
  • George JN, Caen JP, Nurden AT. Glanzmann’s thrombasthenia: The spectrum of clinical disease. Blood 1990;75(7):1383–1395.
  • Toogeh G, Sharifian R, Lak M, Safaee R, Artoni A, Peyvandi F. Presentation and pattern of symptoms in 382 patients with Glanzmann thrombasthenia in Iran. Am J Hematol 2004;77(2):198–199.
  • Budnik I, Shenkman B, Savion N. Role of G protein signaling in the formation of the fibrin(ogen)-integrin alphaIIbbeta3-actin cytoskeleton complex in platelets. Platelets 2016;27(6):563–575.
  • Phillips DR, Agin PP. Platelet membrane defects in Glanzmann’s thrombasthenia. Evidence for decreased amounts of two major glycoproteins. J Clin Invest 1977;60(3):535–545.
  • Nurden AT, Caen JP. An abnormal platelet glycoprotein pattern in three cases of Glanzmann’s thrombasthenia. Br J Haematol 1974;28(2):253–260.
  • Coller BS, Shattil SJ. The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. Blood 2008;112(8):3011–3025.
  • Nurden AT, Pillois X, Nurden P. Understanding the genetic basis of Glanzmann thrombasthenia: Implications for treatment. Expert Rev Hematol 2012;5(5):487–503.
  • French DL, Seligsohn U. Platelet glycoprotein IIb/IIIa receptors and Glanzmann’s thrombasthenia. Arterioscler Thromb Vasc Biol 2000;20(3):607–610.
  • Kannan M, Ahmad F, Yadav BK, Kumar R, Choudhry VP, Saxena R. Molecular defects in ITGA2B and ITGB3 genes in patients with Glanzmann thrombasthenia. J Thromb Haemost 2009;7(11):1878–1885.
  • Haghighi A, Borhany M, Ghazi A, Edwards N, Tabaksert A, Haghighi A, et al. Glanzmann thrombasthenia in Pakistan: Molecular analysis and identification of novel mutations. Clin Genet 2016;89(2):187–192.
  • Nurden AT, Pillois X, Fiore M, Alessi MC, Bonduel M, Dreyfus M, et al. Expanding the Mutation Spectrum Affecting alphaIIbbeta3 Integrin in Glanzmann Thrombasthenia: screening of the ITGA2B and ITGB3 Genes in a Large International Cohort. Hum Mutat 2015;36(5):548–561.
  • Noris P, Klersy C, Gresele P, Giona F, Giordano P, Minuz P, et al. Platelet size for distinguishing between inherited thrombocytopenias and immune thrombocytopenia: A multicentric, real life study. Br J Haematol 2013;162(1):112–119.
  • Bury L, Falcinelli E, Chiasserini D, Springer TA, Italiano JE Jr., Gresele P. Cytoskeletal perturbation leads to platelet dysfunction and thrombocytopenia in variant forms of Glanzmann thrombasthenia. Haematologica 2016;101(1):46–56.
  • Buitrago L, Rendon A, Liang Y, Simeoni I, Negri A, ThromboGenomics C, et al. alphaIIbbeta3 variants defined by next-generation sequencing: predicting variants likely to cause Glanzmann thrombasthenia. Proc Natl Acad Sci U S A 2015;112(15):E1898–907.
  • Hauschner H, Mor-Cohen R, Messineo S, Mansour W, Seligsohn U, Savoia A, et al. Abnormal cytoplasmic extensions associated with active alphaIIbbeta3 are probably the cause for macrothrombocytopenia in Glanzmann thrombasthenia-like syndrome. Blood Coagul Fibrinolysis 2015;26(3):302–308.
  • Kashiwagi H, Kunishima S, Kiyomizu K, Amano Y, Shimada H, Morishita M, et al. Demonstration of novel gain-of-function mutations of alphaIIbbeta3: association with macrothrombocytopenia and glanzmann thrombasthenia-like phenotype. Mol Genet Genomic Med 2013;1(2):77–86.
  • Gresele P, Falcinelli E, Giannini S, D’Adamo P, D’Eustacchio A, Corazzi T, et al. Dominant inheritance of a novel integrin beta3 mutation associated with a hereditary macrothrombocytopenia and platelet dysfunction in two Italian families. Haematologica 2009;94(5):663–669.
  • Nurden AT, Fiore M, Nurden P, Pillois X. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood 2011;118(23):5996–6005.
  • Schlegel N, Gayet O, Morel-Kopp MC, Wyler B, Hurtaud-Roux MF, Kaplan C, et al. The molecular genetic basis of Glanzmann’s thrombasthenia in a gypsy population in France: identification of a new mutation on the alpha IIb gene. Blood 1995;86(3):977–982.
  • Fiore M, Firah N, Pillois X, Nurden P, Heilig R, Nurden AT. Natural history of platelet antibody formation against alphaIIbbeta3 in a French cohort of Glanzmann thrombasthenia patients. Haemophilia 2012;18(3):e201–9.
  • Lopez JA. The platelet glycoprotein Ib-IX complex. Blood Coagul Fibrinolysis 1994;5(1):97–119.
  • Estevez B, Kim K, Delaney MK, Stojanovic-Terpo A, Shen B, Ruan C, et al. Signaling-mediated cooperativity between glycoprotein Ib-IX and protease-activated receptors in thrombin-induced platelet activation. Blood 2016;127(5):626–636.
  • Kanaji T, Ware J, Okamura T, Newman PJ. GPIbalpha regulates platelet size by controlling the subcellular localization of filamin. Blood 2012;119(12):2906–2913.
  • Falet H, Pollitt AY, Begonja AJ, Weber SE, Duerschmied D, Wagner DD, et al. A novel interaction between FlnA and Syk regulates platelet ITAM-mediated receptor signaling and function. J Exp Med 2010;207(9):1967–1979.
  • Savoia A, Pastore A, De Rocco D, Civaschi E, Di Stazio M, Bottega R, et al. Clinical and genetic aspects of Bernard-Soulier syndrome: searching for genotype/phenotype correlations. Haematologica 2011;96(3):417–423.
  • Noris P, Perrotta S, Bottega R, Pecci A, Melazzini F, Civaschi E, et al. Clinical and laboratory features of 103 patients from 42 Italian families with inherited thrombocytopenia derived from the monoallelic Ala156Val mutation of GPIbalpha (Bolzano mutation). Haematologica 2012;97(1):82–88.
  • Savoia A, Balduini CL, Savino M, Noris P, Del Vecchio M, Perrotta S, et al. Autosomal dominant macrothrombocytopenia in Italy is most frequently a type of heterozygous Bernard-Soulier syndrome. Blood 2001;97(5):1330–1335.
  • Vettore S, Scandellari R, Moro S, Lombardi AM, Scapin M, Randi ML, et al. Novel point mutation in a leucine-rich repeat of the GPIbalpha chain of the platelet von Willebrand factor receptor, GPIb/IX/V, resulting in an inherited dominant form of Bernard-Soulier syndrome affecting two unrelated families: The N41H variant. Haematologica 2008;93(11):1743–1747.
  • Li J, Dai K, Wang Z, Cao L, Bai X, Ruan C. Platelet functional alterations in a Bernard-Soulier syndrome patient with filamin A mutation. J Hematol Oncol 2015;8:79.
  • Hay BN. Deletion 22q11: Spectrum of associated disorders. Semin Pediatr Neurol 2007;14(3):136–139.
  • Liang HP, Morel-Kopp MC, Curtin J, Wilson M, Hewson J, Chen W, et al. Heterozygous loss of platelet glycoprotein (GP) Ib-V-IX variably affects platelet function in velocardiofacial syndrome (VCFS) patients. Thromb Haemost 2007;98(6):1298–1308.
  • Catricala S, Guidetti GF, Canobbio I, Pecci A, Balduini CL, Balduini C, et al. The irreversibility of platelet aggregation is regulated by myosin IIA, but is not compromised in MYH9-related disease. Thromb Res 2011;127(2):171–173.
  • Vicente-Manzanares M, Ma X, Adelstein RS, Horwitz AR. Non-muscle myosin II takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009;10(11):778–790.
  • Seri M, Cusano R, Gangarossa S, Caridi G, Bordo D, Lo Nigro C, et al. Mutations in MYH9 result in the May-Hegglin anomaly, and Fechtner and Sebastian syndromes. The May-Heggllin/Fechtner Syndrome Consortium. Nat Genet 2000;26(1):103–105.
  • Kunishima S, Kojima T, Tanaka T, Kamiya T, Ozawa K, Nakamura Y, et al. Mapping of a gene for May-Hegglin anomaly to chromosome 22q. Hum Genet 1999;105(5):379–383.
  • Noris P, Biino G, Pecci A, Civaschi E, Savoia A, Seri M, et al. Platelet diameters in inherited thrombocytopenias: analysis of 376 patients with all known disorders. Blood 2014;124(6):e4–e10.
  • Spinler KR, Shin JW, Lambert MP, Discher DE. Myosin-II repression favors pre/proplatelets but shear activation generates platelets and fails in macrothrombocytopenia. Blood 2015;125(3):525–533.
  • Noris P, Spedini P, Belletti S, Magrini U, Balduini CL. Thrombocytopenia, giant platelets, and leukocyte inclusion bodies (May-Hegglin anomaly): Clinical and laboratory findings. Am J Med 1998;104(4):355–360.
  • Kamath V, Gnanasekaran KK, Mammen J. MYH9-related disorder, a probable May-Hegglin anomaly case series: A tertiary care experience. Hematol Oncol Stem Cell Ther 2016;9(4):137–140.
  • Canobbio I, Noris P, Pecci A, Balduini A, Balduini CL, Torti M. Altered cytoskeleton organization in platelets from patients with MYH9-related disease. J Thromb Haemost 2005;3(5):1026–1035.
  • Leon C, Eckly A, Hechler B, Aleil B, Freund M, Ravanat C, et al. Megakaryocyte-restricted MYH9 inactivation dramatically affects hemostasis while preserving platelet aggregation and secretion. Blood 2007;110(9):3183–3191.
  • Wang A, Ma X, Conti MA, Adelstein RS. Distinct and redundant roles of the non-muscle myosin II isoforms and functional domains. Biochem Soc Trans 2011;39(5):1131–1135.
  • Mumford AD, Frelinger AL 3rd, Gachet C, Gresele P, Noris P, Harrison P, et al. A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb Haemost 2015;114(1):14–25.
  • Eckly A, Rinckel JY, Proamer F, Ulas N, Joshi S, Whiteheart SW, et al. Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood 2016;128(21):2538–2549.
  • Welsh JD, Stalker TJ, Voronov R, Muthard RW, Tomaiuolo M, Diamond SL, et al. A systems approach to hemostasis: 1. The interdependence of thrombus architecture and agonist movements in the gaps between platelets. Blood 2014;124(11):1808–1815.
  • Ambrosio AL, Di Pietro SM. Storage pool diseases illuminate platelet dense granule biogenesis. Platelets 2017;28(2):138–146.
  • Mills DC, Robb IA, Roberts GC. The release of nucleotides, 5-hydroxytryptamine and enzymes from human blood platelets during aggregation. J Physiol 1968;195(3):715–729.
  • Feinman RD, Lubowsky J, Charo I, Zabinski MP. The lumi-aggregometer: A new instrument for simultaneous measurement of secretion and aggregation by platelets. J Lab Clin Med 1977;90(1):125–129.
  • Miller JL. Platelet function testing: An improved approach utilizing lumi-aggregation and an interactive computer system. Am J Clin Pathol 1984;81(4):471–476.
  • Quiroga T, Goycoolea M, Matus V, Zuniga P, Martinez C, Garrido M, et al. Diagnosis of mild platelet function disorders. Reliability and usefulness of light transmission platelet aggregation and serotonin secretion assays. Br J Haematol 2009;147(5):729–736.
  • Pai M, Wang G, Moffat KA, Liu Y, Seecharan J, Webert K, et al. Diagnostic usefulness of a lumi-aggregometer adenosine triphosphate release assay for the assessment of platelet function disorders. Am J Clin Pathol 2011;136(3):350–358.
  • Israels SJ, McNicol A, Robertson C, Gerrard JM. Platelet storage pool deficiency: diagnosis in patients with prolonged bleeding times and normal platelet aggregation. Br J Haematol 1990;75(1):118–121.
  • Gunay-Aygun M, Zivony-Elboum Y, Gumruk F, Geiger D, Cetin M, Khayat M, et al. Gray platelet syndrome: Natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010;116(23):4990–5001.
  • Nurden AT, Nurden P. Should any genetic defect affecting alpha-granules in platelets be classified as gray platelet syndrome?. Am J Hematol 2016;91(7):714–718.
  • Zang C, Luyten A, Chen J, Liu XS, Shivdasani RA. NF-E2, FLI1 and RUNX1 collaborate at areas of dynamic chromatin to activate transcription in mature mouse megakaryocytes. Sci Rep 2016;6:30255.
  • Tijssen MR, Cvejic A, Joshi A, Hannah RL, Ferreira R, Forrai A, et al. Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators. Dev Cell 2011;20(5):597–609.
  • Latger-Cannard V, Philippe C, Bouquet A, Baccini V, Alessi MC, Ankri A, et al. Haematological spectrum and genotype-phenotype correlations in nine unrelated families with RUNX1 mutations from the French network on inherited platelet disorders. Orphanet J Rare Dis 2016;11:49.
  • Gao J, Chen YH, Peterson LC. GATA family transcriptional factors: emerging suspects in hematologic disorders. Exp Hematol Oncol 2015;4:28.
  • Mateos MK, Barbaric D, Byatt SA, Sutton R, Marshall GM. Down syndrome and leukemia: insights into leukemogenesis and translational targets. Transl Pediatr 2015;4(2):76–92.
  • Freson K, Devriendt K, Matthijs G, Van Hoof A, De Vos R, Thys C, et al. Platelet characteristics in patients with X-linked macrothrombocytopenia because of a novel GATA1 mutation. Blood 2001;98(1):85–92.
  • Hughan SC, Senis Y, Best D, Thomas A, Frampton J, Vyas P, et al. Selective impairment of platelet activation to collagen in the absence of GATA1. Blood 2005;105(11):4369–4376.
  • Lordkipanidze M, Lowe GC, Kirkby NS, Chan MV, Lundberg MH, Morgan NV, et al. Characterization of multiple platelet activation pathways in patients with bleeding as a high-throughput screening option: Use of 96-well Optimul assay. Blood 2014;123(8):e11–22.
  • Dovlatova N, May JA, Fox SC. Remote platelet function testing–Significant progress towards widespread testing in clinical practice. Platelets 2015;26(5):399–401.
  • Bellucci S, Caen J. Molecular basis of Glanzmann’s Thrombasthenia and current strategies in treatment. Blood Rev 2002;16(3):193–202.
  • Lopez JA, Andrews RK, Afshar-Kharghan V, Berndt MC. Bernard-Soulier syndrome. Blood 1998;91(12):4397–4418.
  • Daly ME, Leo VC, Lowe GC, Watson SP, Morgan NV. What is the role of genetic testing in the investigation of patients with suspected platelet function disorders?. Br J Haematol 2014;165(2):193–203.
  • Simeoni I, Stephens JC, Hu F, Deevi SV, Megy K, Bariana TK, et al. A high-throughput sequencing test for diagnosing inherited bleeding, thrombotic, and platelet disorders. Blood 2016;127(23):2791–2803.
  • Bariana TK, Ouwehand WH, Guerrero JA, Gomez K, Bridge Bleeding T, Platelet D, et al. Dawning of the age of genomics for platelet granule disorders: improving insight, diagnosis and management. Br J Haematol 2017;176(5):705–720.
  • Lentaigne C, Freson K, Laffan MA, Turro E, Ouwehand WH, Consortium -B-B, et al. Inherited platelet disorders: Toward DNA-based diagnosis. Blood 2016;127(23):2814–2823.
  • Leo VC, Morgan NV, Bem D, Jones ML, Lowe GC, Lordkipanidze M, et al. Use of next-generation sequencing and candidate gene analysis to identify underlying defects in patients with inherited platelet function disorders. J Thromb Haemost 2015;13(4):643–650.
  • Westbury SK, Turro E, Greene D, Lentaigne C, Kelly AM, Bariana TK, et al. Human phenotype ontology annotation and cluster analysis to unravel genetic defects in 707 cases with unexplained bleeding and platelet disorders. Genome Med 2015;7(1):36.
  • Jackers P, Szalai G, Moussa O, Watson DK. Ets-dependent regulation of target gene expression during megakaryopoiesis. J Biol Chem 2004;279(50):52183–52190.
  • Moussa O, LaRue AC, Abangan RS, Jr., Williams CR, Zhang XK, Masuya M, et al. Thrombocytopenia in mice lacking the carboxy-terminal regulatory domain of the Ets transcription factor Fli1. Mol Cell Biol 2010;30(21):5194–5206.
  • Stevenson WS, Rabbolini DJ, Beutler L, Chen Q, Gabrielli S, Mackay JP, et al. Paris-Trousseau thrombocytopenia is phenocopied by the autosomal recessive inheritance of a DNA-binding domain mutation in FLI1. Blood 2015;126(17):2027–2030.
  • Sun L, Gorospe JR, Hoffman EP, Rao AK. Decreased platelet expression of myosin regulatory light chain polypeptide (MYL9) and other genes with platelet dysfunction and CBFA2/RUNX1 mutation: insights from platelet expression profiling. J Thromb Haemost 2007;5(1):146–154.
  • Heller PG, Glembotsky AC, Gandhi MJ, Cummings CL, Pirola CJ, Marta RF, et al. Low Mpl receptor expression in a pedigree with familial platelet disorder with predisposition to acute myelogenous leukemia and a novel AML1 mutation. Blood 2005;105(12):4664–4670.
  • Kaur G, Jalagadugula G, Mao G, Rao AK. RUNX1/core binding factor A2 regulates platelet 12-lipoxygenase gene (ALOX12): studies in human RUNX1 haplodeficiency. Blood 2010;115(15):3128–3135.
  • Aneja K, Jalagadugula G, Mao G, Singh A, Rao AK. Mechanism of platelet factor 4 (PF4) deficiency with RUNX1 haplodeficiency: RUNX1 is a transcriptional regulator of PF4. J Thromb Haemost 2011;9(2):383–391.
  • Jalagadugula G, Mao G, Kaur G, Dhanasekaran DN, Rao AK. Platelet protein kinase C-theta deficiency with human RUNX1 mutation: PRKCQ is a transcriptional target of RUNX1. Arterioscler Thromb Vasc Biol 2011;31(4):921–927.
  • Mao GF, Goldfinger LE, Fan DC, Lambert MP, Jalagadugula G, Freishtat R, et al. Dysregulation of PLDN (Pallidin) is a mechanism for platelet dense granule deficiency in RUNX1 haplodeficiency. J Thromb Haemost 2017;15(4):792–801.
  • Bluteau D, Glembotsky AC, Raimbault A, Balayn N, Gilles L, Rameau P, et al. Dysmegakaryopoiesis of FPD/AML pedigrees with constitutional RUNX1 mutations is linked to myosin II deregulated expression. Blood 2012;120(13):2708–2718.
  • Jalagadugula G, Mao G, Kaur G, Goldfinger LE, Dhanasekaran DN, Rao AK. Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood 2010;116(26):6037–6045.
  • Antony-Debre I, Bluteau D, Itzykson R, Baccini V, Renneville A, Boehlen F, et al. MYH10 protein expression in platelets as a biomarker of RUNX1 and FLI1 alterations. Blood 2012;120(13):2719–2722.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.