521
Views
13
CrossRef citations to date
0
Altmetric
Review Article

The platelet shape change: biophysical basis and physiological consequences

ORCID Icon &
Pages 543-548 | Received 15 Jun 2018, Accepted 10 Jul 2018, Published online: 25 Sep 2018

References

  • Brewer DB. Max Schultze (1865). G. Bizzozero (1882) and the discovery of the platelet. Br J Haematol 2006;133:251–258. doi:10.1111/j.1365-2141.2006.05996.x
  • Riondino S, Lotti LV, Cutini L, Pulcinelli FM. Collagen-induced platelet shape change is not affected by positive feedback pathway inhibitors and cAMP-elevating agents. J Biol Chem 2005;280:6504–6510. doi:10.1074/jbc.M407854200
  • Aslan JE. Platelet Shape Change. In: Gresele P., Kleiman N., Lopez J., Page C., editors. Platelets inThrombotic and Non-Thrombotic Disorders. 3rd ed. Springer, Cham; 2017. 321–326. doi: 10.1007/978-3-319-47462-5_24
  • Shin E-K, Park H, Noh J-Y, Lim KM, Chung JH. Platelet shape changes and cytoskeleton dynamics as novel therapeutic targets for anti-thrombotic drugs. Biomol Ther 2016;25:223–230. doi:10.4062/biomolther.2016.138
  • Zhang P, Zhang L, Slepian MJ, Deng Y, Bluestein D. A multiscale biomechanical model of platelets: correlating with in-vitro results. J Biomech 2017;50:26–33. doi:10.1016/j.jbiomech.2016.11.019
  • Diagouraga B, Grichine A, Fertin A, Wang J, Khochbin S, Sadoul K. Motor-driven marginal band coiling promotes cell shape change during platelet activation. J Cell Biol 2014;204:177–185. doi:10.1083/jcb.201306085
  • Dmitrieff S, Alsina A, Mathur A, Nédélec F. Balance of microtubule stiffness and cortical tension determines the size of blood cells with marginal band across species. Proc Natl Acad Sci 2017;114:4418–4423. doi:10.1073/pnas.1618041114
  • Frojmovic MM, Panjwani R. Geometry of normal mammalian platelets by quantitative microscopic studies. Biophys J 1976;16:1071–1089. doi:10.1016/S0006-3495(76)85756-6
  • Chesnutt JKW, Han H-C. Platelet size and density affect shear-induced thrombus formation in tortuous arterioles. Phys Biol 2013;10. doi:10.1088/1478-3975/10/5/056003
  • Litvinenko AL, Moskalensky AE, Karmadonova NA, Nekrasov VM, Strokotov DI, Konokhova AI, Yurkin MA, Pokushalov EA, Chernyshev AV, Maltsev VP. Fluorescence-free flow cytometry for measurement of shape index distribution of resting, partially activated, and fully activated platelets. Cytometry A 2016;89:1010–1016. doi:10.1002/cyto.a.23003
  • Myers DR, Qiu Y, Fay ME, Tennenbaum M, Chester D, Cuadrado J, Sakurai Y, Baek J, Tran R, Ciciliano JC, et al. Single-platelet nanomechanics measured by high-throughput cytometry. Nat Mater 2017;16:230–235. doi:10.1038/nmat4772
  • Dai L, Gu N, Chen BA, Marriott G. Human platelets repurposed as vehicles for in vivo imaging of myeloma xenotransplants. Oncotarget 2016;7:21076–21090. doi:10.18632/oncotarget.8517
  • Hartwig JH. The platelet cytoskeleton. In: Michelson, AD, editor. Platelets, 3rd ed. Academic Press, New York; 2017. pp. 145–168.
  • White JG. Morphology and ultrastructure of platelets. In: Gresele P., Page C., Fuster V., Vermylen J., editors. Platelets in Thrombotic and Non-Thrombotic Disorders. Cambridge University Press, Cambridge; 2002. p. 41–69.
  • Evans E, Yeung A. Apparent viscosity and cortical tension of blood granulocytes determined by micropipet aspiration. Biophys J 1989;56:151–160. doi:10.1016/S0006-3495(89)82660-8
  • Winokur R, Hartwig JH. Mechanism of shape change in chilled human platelets. Blood 1995;85:1796–1804.
  • Patel-Hett S, Richardson JL, Schulze H, DrabekK, Isaac NA, Hoffmeister K, Shivdasani RA, Bulinski JC, Galjart N,Hartwig JH, et al. Visualization of microtubule growth in living platelets reveals a dynamic marginal band with multiple microtubules. Blood 2008;111:4605–4616. doi:10.1182/blood-2007-10-118844
  • Paknikar AK, Eltzner B, Köster S. Direct characterization of cytoskeletal reorganization during blood platelet spreading. Prog Biophys Mol Biol doi:10.1016/j.pbiomolbio.2018.05.001
  • White JG, Rao GH. Microtubule coils versus the surface membrane cytoskeleton in maintenance and restoration of platelet discoid shape. Am J Pathol 1998;152:597–609.
  • Thon JN, Macleod H, Begonja AJ, Zhu J, Lee KC,Mogilner A, Hartwig JH, Italiano JE Jr. Microtubule and cortical forces determine platelet size during vascular platelet production. Nat Commun 2012;3:852. doi:10.1038/ncomms1838
  • Moskalensky AE, Yurkin MA, Muliukov AR, Litvinenko AL, Nekrasov VM, Chernyshev AV, Maltsev VP. Method for the simulation of blood platelet shape and its evolution during activation. PLoS Comput Biol 2018;14:e1005899. doi:10.1371/journal.pcbi.1006137
  • Schnauß J, Händler T, Käs JA. Semiflexible Biopolymers in Bundled Arrangements. Polymers 2016;8:274. doi:10.3390/polym8080274
  • Alfutov NA. 6.1 Stability of circular ring. Stab. Elastic struct Internet. Berlin: Springer Science & Business Media; 2013. p. 221–239. cited 2017 Aug 19. Available from: http://www.springer.com/us/book/9783540657002
  • Rosado JA, Sage SO. Platelet signalling: calcium. In: Gresele P., Page C., Fuster V., Vermylen J., editors. Platelets in Thrombotic and Non-Thrombotic Disorders. Cambridge University Press, Cambridge; 2002. p. 260-271.
  • Purvis JE, Chatterjee MS, Brass LF, Diamond SL. A molecular signaling model of platelet phosphoinositide and calcium regulation during homeostasis and P2Y1 activation. Blood 2008;112:4069–4079. doi:10.1182/blood-2008-03-140830
  • Daniel JL, Molish IR, Rigmaiden M, Stewart G. Evidence for a role of myosin phosphorylation in the initiation of the platelet shape change response. J Biol Chem 1984;259:9826–9831.
  • Paul BZ, Daniel JL, Kunapuli SP. Platelet shape change is mediated by both calcium-dependent and -independent signaling pathways. Role of p160 Rho-associated coiled-coil-containing protein kinase in platelet shape change. J Biol Chem 1999;274:28293–28300. doi:10.1074/jbc.274.40.28293
  • Murrell M, Oakes PW, Lenz M, Gardel ML. Forcing cells into shape: the mechanics of actomyosin contractility. Nat Rev Mol Cell Biol 2015;16:486–498. doi:10.1038/nrm4012
  • Fox JE. The platelet cytoskeleton. Thromb Haemost 1993;70:884–893.
  • Johnson GJ, Leis LA, Krumwiede MD, White JG. The critical role of myosin IIA in platelet internal contraction. J Thromb Haemost 2007;5:1516–1529. doi:10.1111/j.1538-7836.2007.02611.x
  • Moskalensky AE, Yurkin MA, Konokhova AI, Strokotov DI, Nekrasov VM, Chernyshev AV, Tsvetovskaya GA, Chikova ED, Maltsev VP. Accurate measurement of volume and shape of resting and activated blood platelets from light scattering. J Biomed Opt 2013;18:17001. doi:10.1117/1.JBO.18.1.017001
  • Hartwig JH. Mechanisms of actin rearrangements mediating platelet activation. J Cell Biol 1992;118:1421–1442. doi:10.1083/jcb.118.6.1421
  • Kiuru S, Javela K, Somer H, Kekomäki R. Altered platelet shape change in hereditary gelsolin Asp187Asn-related amyloidosis. Thromb Haemost 2000;83:491–495. doi:10.1055/s-0037-1613842
  • Witke W, Sharpe AH, Hartwig JH, Azuma T,Stossel TP, Kwiatkowski DJ. Hemostatic, inflammatory, and fibroblast responses are blunted in mice lacking gelsolin. Cell 1995;81:41–51. doi:10.1016/0092-8674(95)90369-0
  • Casella JF, Flanagan MD, Lin S. Cytochalasin D inhibits actin polymerization and induces depolymerization of actin filaments formed during platelet shape change. Nature 1981;293:302–305. doi:10.1038/293302a0
  • Finkenstaedt-Quinn SA, Ge S, Haynes CL. Cytoskeleton dynamics in drug-treated platelets. Anal Bioanal Chem 2015;407:2803–2809. doi:10.1007/s00216-015-8491-y
  • Addo JB, Bray PF, Grigoryev D, Faraday N, & Goldschmidt CP. Surface recruitment but not activation of integrin alpha IIb beta 3 (GPIIb-IIIa) requires a functional actin cytoskeleton. Arterioscler Thromb Vasc Biol 1995;15:1466–1473. doi:10.1161/01.ATV.15.9.1466
  • Natarajan P, May JA, Sanderson HM, Zabe M, Spangenberg P, Heptinstall S. Effects of cytochalasin H, a potent inhibitor of cytoskeletal reorganisation, on platelet function. Platelets 2000;11:467–476. doi:10.1080/09537100020027842
  • Karr TL, Kristofferson D, Purich DL. Calcium ion induces endwise depolymerization of bovine brain microtubules. J Biol Chem 1980;255:11853–11856.
  • O’Brien ET, Salmon ED, Erickson HP. How calcium causes microtubule depolymerization. Cell Motil Cytoskeleton 1997;36:125–135. doi:10.1002/(SICI)1097-0169(1997)36:2<125::AID-CM3>3.0.CO;2-8
  • Steiner M, Ikeda Y. Quantitative assessment of polymerized and depolymerized platelet microtubules. J Clin Invest 1979;63:443–448. doi:10.1172/JCI109321
  • Kenney DM, Chao FC. Ionophore-induced disassembly of blood platelet microtubules: effect of cyclic AMP and indomethacin. J Cell Physiol 1980;103:289–298. doi:10.1002/(ISSN)1097-4652
  • Gao SY, Li CY, Chen J, Pan L, Saito S, TerashitaT, Saito K, Miyawaki K, Shigemoto K, Mominoki K, et al. Rho-ROCK signal pathway regulates microtubule-based process formation of cultured podocytes–inhibition of ROCK promoted process elongation. Nephron Exp Nephrol 2004;97:e49–61. doi:10.1159/000078406
  • Vinogradova MV, Malanina GG, Reddy AS, Fletterick RJ. Structure of the complex of a mitotic kinesin with its calcium binding regulator. Proc Natl Acad Sci USA 2009;106:8175–8179. doi:10.1073/pnas.0811131106
  • Hisanaga S, Pratt MM. Calmodulin interaction with cytoplasmic and flagellar dynein: calcium-dependent binding and stimulation of adenosine triphosphatase activity. Biochemistry (Mosc) 1984;23:3032–3037. doi:10.1021/bi00308a029
  • Vetter R, Wittel FK, Herrmann HJ. Morphogenesis of filaments growing in flexible confinements. Nat Commun 2014;5:4437. doi:10.1038/ncomms5972
  • Guven J, Vázquez-Montejo P. Confinement of semiflexible polymers. Phys Rev E 2012;85:026603. doi:10.1103/PhysRevE.85.026603
  • Ohmuro J, Ishijima S. Hyperactivation is the mode conversion from constant-curvature beating to constant-frequency beating under a constant rate of microtubule sliding. Mol Reprod Dev 2006;73:1412–1421. doi:10.1002/(ISSN)1098-2795
  • Mouthuy P-O, Coulombier M, Pardoen T, RaskinJ-P, Jonas AM. Overcurvature describes the buckling and folding of rings from curved origami to foldable tents. Nat Commun 2012;3:1290. doi:10.1038/ncomms2311
  • Ruggeri ZM. Platelet adhesion under flow. Microcirc N. Y. N 1994 2009;16:58–83.doi:10.1080/10739680802651477
  • Tilles AW, Eckstein EC. The near-wall excess of platelet-sized particles in blood flow: its dependence on hematocrit and wall shear rate. Microvasc Res 1987;33:211–223. doi:10.1016/0026-2862(87)90018-5
  • Aarts PA, van den Broek SA, Prins GW, Kuiken GD, Sixma JJ, Heethaar RM. Blood platelets are concentrated near the wall and red blood cells, in the center in flowing blood. Arterioscler Thromb Vasc Biol 1988;8:819–824. doi:10.1161/01.ATV.8.6.819
  • White JG, de Alarcon PA. Platelet spherocytosis: a new bleeding disorder. Am J Hematol 2002;70:158–166. doi:10.1002/(ISSN)1096-8652
  • Italiano JE Jr, Bergmeier W, Tiwari S, Falet H, Hartwig JH, Hoffmeister KM, André P, Wagner DD, Shivdasani RA. Mechanisms and implications of platelet discoid shape. Blood 2003;101:4789–4796. doi:10.1182/blood-2002-11-3491
  • Gentile F, Chiappini C, Fine D, Bhavane RC, Peluccio MS, Cheng MM, Liu X, Ferrari M, Decuzzi P. The effect of shape on the margination dynamics of non-neutrally buoyant particles in two-dimensional shear flows. J Biomech 2008;41:2312–2318. doi:10.1016/j.jbiomech.2008.03.021
  • Thompson AJ, Mastria EM, Eniola-Adefeso O. The margination propensity of ellipsoidal micro/nanoparticles to the endothelium in human blood flow. Biomaterials 2013;34:5863–5871. doi:10.1016/j.biomaterials.2013.04.011
  • Maxwell MJ, Westein E, Nesbitt WS, Giuliano S, Dopheide SM, Jackson SP. Identification of a 2-stage platelet aggregation process mediating shear-dependent thrombus formation. Blood 2007;109:566–576. doi:10.1182/blood-2006-02-004234
  • Vahidkhah K, Diamond SL, Bagchi P. Platelet dynamics in three-dimensional simulation of whole blood. Biophys J 2014;106:2529–2540. doi:10.1016/j.bpj.2014.04.028
  • Li JL, Zarbock A, Hidalgo A. Platelets as autonomous drones for hemostatic and immune surveillance. J Exp Med 2017;214(8): 2193–2204.
  • Rack K, Huck V, Hoore M, Fedosov DA, Schneider SW, Gompper G. Margination and stretching of von Willebrand factor in the blood stream enable adhesion. Sci Rep 2017;7. doi:10.1038/s41598-017-14346-4
  • Chopard B, de Sousa DR, Lätt J, Mountrakis L, Dubois F, Yourassowsky C, Van Antwerpen P, Eker O, Vanhamme L, Perez-Morga D, et al. A physical description of the adhesion and aggregation of platelets. R Soc Open Sci 2017;4:170219. doi:10.1098/rsos.170219

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.