278
Views
1
CrossRef citations to date
0
Altmetric
Articles

Effect of advanced glycation end products on platelet activation and aggregation: a comparative study of the role of glyoxal and methylglyoxal

, , , , , & ORCID Icon show all
Pages 507-515 | Received 24 Feb 2020, Accepted 07 May 2020, Published online: 23 May 2020

References

  • Palomo GI, Icaza NG, Mujica EV, Nunez FL, Leiva ME, Vasquez RM, Alarcon LM, Moyano DE. Prevalence of cardiovascular risk factors in adult from Talca, Chile. Rev Med Chil 2007;135(7):904–912. doi:10.4067/s0034-98872007000700011.
  • Willoughby S, Holmes A, Loscalzo J. Platelets and cardiovascular disease. Eur J Cardiovasc Nurs 2002;1(4):273–288. doi:10.1016/s1474-5151(02)00038-5.
  • Ruggeri ZM. Mechanisms initiating platelet thrombus formation. Thromb Haemost 1997;78(1):611–616. doi:10.1055/s-0038-1657598.
  • Gkaliagkousi E, Nikolaidou B, Gavriilaki E, Lazaridis A, Yiannaki E, Anyfanti P, Zografou I, Markala D, Douma S. Increased erythrocyte- and platelet-derived microvesicles in newly diagnosed type 2 diabetes mellitus. Diab Vasc Dis Res 2019;16(5):458–465. doi:10.1177/1479164119844691.
  • Ahmed N. Advanced glycation endproducts–role in pathology of diabetic complications. Diab Res Clin Pract 2005;67(1):3–21. doi:10.1016/j.diabres.2004.09.004.
  • Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res 2010;107(9):1058–1070. doi:10.1161/CIRCRESAHA.110.223545.
  • Kerkeni M, Saidi A, Bouzidi H, Letaief A, Ben Yahia S, Hammami M. Pentosidine as a biomarker for microvascular complications in type 2 diabetic patients. Diab Vasc Dis Res 2013;10(3):239–245. doi:10.1177/1479164112460253.
  • Tsakiri EN, Iliaki KK, Hohn A, Grimm S, Papassideri IS, Grune T, Trougakos IP. Diet-derived advanced glycation end products or lipofuscin disrupts proteostasis and reduces life span in Drosophila melanogaster. Free Rad Biol Med 2013;65:1155–1163. doi:10.1016/j.freeradbiomed.2013.08.186.
  • Kosmopoulos M, Drekolias D, Zavras PD, Piperi C, Papavassiliou AG. Impact of advanced glycation end products (AGEs) signaling in coronary artery disease. Biochim Biophys Acta Mol Basis Dis 2019;1865(3):611–619. doi:10.1016/j.bbadis.2019.01.006.
  • Roberts MA, Thomas MC, Fernando D, Macmillan N, Power DA, Ierino FL. Low molecular weight advanced glycation end products predict mortality in asymptomatic patients receiving chronic haemodialysis. Nephrol Dial Transplant 2006;21(6):1611–1617. doi:10.1093/ndt/gfl053.
  • Heltianu C, Manea S-A, Guja C, Mihai C, Ionescu-Tirgoviste C. Correlation of low molecular weight advanced glycation end products and nitric oxide metabolites with chronic complications in type 1 diabetic patients. Cent Eur J Biol 2008;3:243–249. doi:10.2478/s11535-008-0019-4.
  • Lyons TJ. Glycation and oxidation: a role in the pathogenesis of atherosclerosis. Am J Cardiol 1993;71(6):26B–31B. doi:10.1016/0002-9149(93)90142-y.
  • Baynes JW, Thorpe SR. Glycoxidation and lipoxidation in atherogenesis. Free Rad Biol Med 2000;28(12):1708–1716. doi:10.1016/s0891-5849(00)00228-8.
  • Kume S, Takeya M, Mori T, Araki N, Suzuki H, Horiuchi S, Kodama T, Miyauchi Y, Takahashi K. Immunohistochemical and ultrastructural detection of advanced glycation end products in atherosclerotic lesions of human aorta with a novel specific monoclonal antibody. Am J Pathol 1995;147(3):654–667. PMID:7545874.
  • Ferreiro JL, Angiolillo DJ. Diabetes and antiplatelet therapy in acute coronary syndrome. Circulation 2011;123(7):798–813. doi:10.1161/CIRCULATIONAHA.109.913376.
  • Hasegawa Y, Suehiro A, Higasa S, Namba M, Kakishita E. Enhancing effect of advanced glycation end products on serotonin-induced platelet aggregation in patients with diabetes mellitus. Thromb Res 2002;107(6):319–323. doi:10.1016/s0049-3848(02)00348-1.
  • Sobol AB, Watala C. The role of platelets in diabetes-related vascular complications. Diab Res Clin Pract 2000;50(1):1–16. doi:10.1016/s0168-8227(00)00160-1.
  • Palomo I, Moore-Carrasco R, Alarcon M, Rojas A, Espana F, Andres V, Gonzalez-Navarro H. Pathophysiology of the proatherothrombotic state in the metabolic syndrome. Front Biosci (Schol Ed) 2010;2:194–208. doi:10.2741/57.
  • Hangaishi M, Taguchi J, Miyata T, Ikari Y, Togo M, Hashimoto Y, Watanabe T, Kimura S, Kurokawa K, Ohno M. Increased aggregation of human platelets produced by advanced glycation end products in vitro. Biochem Biophys Res Commun 1998;248(2):285–292. doi:10.1006/bbrc.1998.8945.
  • Chen L, Liu Y, Cui B, Mi Q, Huang Y, Fan L, Chen Q, Tang J, Ferro A, Ji Y. 17Beta-oestradiol partially attenuates the inhibition of nitric oxide synthase-3 by advanced glycation end-products in human platelets. Clin Exp Pharmacol Physiol 2007;34(10):972–978. doi:10.1111/j.1440-1681.2007.04680.x.
  • Han Y, Liu Y, Mi Q, Xie L, Huang Y, Jiang Q, Chen Q, Ferro A, Liu N, Ji Y. Pyridoxine improves platelet nitric oxide synthase dysfunction induced by advanced glycation end products in vitro. Int J Vitam Nutr Res 2010;80(3):168–177. doi:10.1024/0300-9831/a000019.
  • Rojas A, Romay S, Gonzalez D, Herrera B, Delgado R, Otero K. Regulation of endothelial nitric oxide synthase expression by albumin-derived advanced glycosylation end products. Circ Res 2000;86(3):E50–54. doi:10.1161/01.res.86.3.e50.
  • Rojas A, Gonzalez D, Figueroa H, Morales MA, Romero J. Modulation of nitric oxide pathway by multiligands/RAGE axis: A crossing point on the road to microvascular complication in diabetes. Curr Enzym Inhibit 2010;6(1):34–45. doi:10.2174/157340810790712050.
  • Rojas A, Mercadal E, Figueroa H, Morales MA. Advanced Glycation and ROS: a link between diabetes and heart failure. Curr Vasc Pharmacol 2008;6(1):44–51. doi:10.2174/157016108783331312.
  • El Khoury J, Thomas CA, Loike JD, Hickman SE, Cao L, Silverstein SC. Macrophages adhere to glucose-modified basement membrane collagen IV via their scavenger receptors. J Biol Chem 1994;269(14):10197–10200. PMID:8144597.
  • Vlassara H, Li YM, Imani F, Wojciechowicz D, Yang Z, Liu FT, Cerami A. Identification of galectin-3 as a high-affinity binding protein for advanced glycation end products (AGE): a new member of the AGE-receptor complex. Mol Med 1995;1(6):634–646. doi:10.1007/BF03401604.
  • Li YM, Mitsuhashi T, Wojciechowicz D, Shimizu N, Li J, Stitt A, He C, Banerjee D, Vlassara H. Molecular identity and cellular distribution of advanced glycation endproduct receptors: relationship of p60 to OST-48 and p90 to 80K-H membrane proteins. Proc Natl Acad Sci U S A 1996;93(20):11047–11052. doi:10.1073/pnas.93.20.11047.
  • Ohgami N, Nagai R, Ikemoto M, Arai H, Miyazaki A, Hakamata H, Horiuchi S, Nakayama H. CD36, serves as a receptor for advanced glycation endproducts (AGE). J Diabetes Complications 2002;16(1):56–59. doi:10.1016/s1056-8727(01)00208-2.
  • Wolfs JL, Comfurius P, Rasmussen JT, Keuren JF, Lindhout T, Zwaal RF, Bevers EM. Activated scramblase and inhibited aminophospholipid translocase cause phosphatidylserine exposure in a distinct platelet fraction. Cell Mol Life Sci 2005;62(13):1514–1525. doi:10.1007/s00018-005-5099-y.
  • Wahid ST, Marshall SM, Thomas TH. Increased platelet and erythrocyte external cell membrane phosphatidylserine in type 1 diabetes and microalbuminuria. Diabetes Care 2001;24(11):2001–2003. doi:10.2337/diacare.24.11.2001-a.
  • Wang Y, Beck W, Deppisch R, Marshall SM, Hoenich NA, Thompson MG. Advanced glycation end products elicit externalization of phosphatidylserine in a subpopulation of platelets via 5-HT2A/2C receptors. Am J Physiol Cell Physiol 2007;293:C328–336. doi:10.1152/ajpcell.00560.2006.
  • Ghosh A, Li W, Febbraio M, Espinola RG, McCrae KR, Cockrell E, Silverstein RL. Platelet CD36 mediates interactions with endothelial cell-derived microparticles and contributes to thrombosis in mice. J Clin Invest 2008;118(5):1934–1943. doi:10.1172/JCI34904.
  • Podrez EA, Byzova TV, Febbraio M, Salomon RG, Ma Y, Valiyaveettil M, Poliakov E, Sun M, Finton PJ, Curtis BR, et al. Platelet CD36 links hyperlipidemia, oxidant stress and a prothrombotic phenotype. Nat Med 2007;13(9):1086–1095. doi:10.1038/nm1626.
  • Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H. CD36, a member of class B scavenger receptor family, is a receptor for advanced glycation end products. Ann N Y Acad Sci 2001;947(1):350–355. doi:10.1111/j.1749-6632.2001.tb03961.x.
  • Zhu W, Li W, Silverstein RL. Advanced glycation end products induce a prothrombotic phenotype in mice via interaction with platelet CD36. Blood 2012;119(25):6136–6144. doi:10.1182/blood-2011-10-387506.
  • Ohgami N, Nagai R, Ikemoto M, Arai H, Kuniyasu A, Horiuchi S, Nakayama H. Cd36, a member of the class b scavenger receptor family, as a receptor for advanced glycation end products. J Biol Chem 2001;276(5):3195–3202. doi:10.1074/jbc.M006545200.
  • Ávila F, Ravello N, Zanocco AL, Gamon LF, Davies MJ, Silva E. 3-Hydroxykynurenine bound to eye lens proteins induces oxidative modifications in crystalline proteins through a type I photosensitizing mechanism. Free Rad Biol Med 2019;141:103–114. doi:10.1016/j.freeradbiomed.2019.05.024.
  • Ahumada M, Lissi E, Montagut AM, Valenzuela-Henriquez F, Pacioni NL, Alarcon EI. Association models for binding of molecules to nanostructures. Analyst 2017;142(12):2067–2089. doi:10.1039/c7an00288b.
  • Fuentes E, Badimon L, Caballero J, Padro T, Vilahur G, Alarcon M, Perez P, Palomo I. Protective mechanisms of adenosine 5ʹ-monophosphate in platelet activation and thrombus formation. Thromb Haemost 2014;111(3):491–507. doi:10.1160/TH13-05-0386.
  • Yokoyama S, Ikeda H, Haramaki N, Yasukawa H, Murohara T, Imaizumi T. Platelet P-selectin plays an important role in arterial thrombogenesis by forming large stable platelet-leukocyte aggregates. J Am Coll Cardiol 2005;45(8):1280–1286. doi:10.1016/j.jacc.2004.12.071.
  • Hegab Z, Gibbons S, Neyses L, Mamas MA. Role of advanced glycation end products in cardiovascular disease. World J Cardiol 2012;4(4):90–102. doi:10.4330/wjc.v4.i4.90.
  • Lutz M, Fuentes E, Avila F, Alarcon M, Palomo I. Roles of phenolic compounds in the reduction of risk factors of cardiovascular diseases. Molecules 2019;24. doi:10.3390/molecules24020366.
  • Gawlowski T, Stratmann B, Ruetter R, Buenting CE, Menart B, Weiss J, Vlassara H, Koschinsky T, Tschoepe D. Advanced glycation end products strongly activate platelets. Eur J Nutr 2009;48(8):475–481. doi:10.1007/s00394-009-0038-6.
  • Soaita I, Yin W, Rubenstein DA. Glycated albumin modifies platelet adhesion and aggregation responses. Platelets 2017;28(7):682–690. doi:10.1080/09537104.2016.1260703.
  • Rubenstein DA, Yin W. Glycated albumin modulates platelet susceptibility to flow induced activation and aggregation. Platelets 2009;20(3):206–215. doi:10.1080/09537100902795492.
  • Sadowska-Bartosz I, Galiniak S, Bartosz G. Kinetics of glycoxidation of bovine serum albumin by methylglyoxal and glyoxal and its prevention by various compounds. Molecules 2014;19(4):4880–4896. doi:10.3390/molecules19044880.
  • Tupe RS, Bangar N, Diwan A, Changale D, Choudhary S, Chaware S. Comparative study of different glycating agents on human plasma and vascular cells. Mol Biol Rep 2020;47(1):521–531. doi:10.1007/s11033-019-05158-y.
  • Bauer M, Baumann J, Trommer WE. ATP binding to bovine serum albumin. FEBS Lett 1992;313(3):288–290. doi:10.1016/0014-5793(92)81211-4.
  • Takeda S, Miyauchi S, Nakayama H, Adenosine KN. 5ʹ-triphosphate binding to bovine serum albumin. Biophys Chem 1997;69(2–3):175–183. doi:10.1016/s0301-4622(97)00084-7.
  • Awasthi S, Murugan NA, Saraswathi NT. Advanced glycation end products modulate structure and drug binding properties of albumin. Mol Pharm 2015;12(9):3312–3322. doi:10.1021/acs.molpharmaceut.5b00318.
  • Lo TW, Westwood ME, McLellan AC, Selwood T, Thornalley PJ. Binding and modification of proteins by methylglyoxal under physiological conditions. A kinetic and mechanistic study with N alpha-acetylarginine, N alpha-acetylcysteine, and N alpha-acetyllysine, and bovine serum albumin. J Biol Chem 1994;269(51):32299–32305.
  • Otahbachi M, Simoni J, Simoni G, Moeller JF, Cevik C, Meyerrose GE, Roongsritong C. Gender differences in platelet aggregation in healthy individuals. J Thromb Thrombolysis 2010;30(2):184–191. doi:10.1007/s11239-009-0436-x.
  • Fuentes E, Rojas A, Palomo I. Role of multiligand/RAGE axis in platelet activation. Thromb Res 2014;133(3):308–314. doi:10.1016/j.thromres.2013.11.007.
  • Leoncini G, Maresca M, Buzzi E. Inhibition of the glycolytic pathway by methylglyoxal in human platelets. Cell Biochem Funct 1989;7(1):65–70. doi:10.1002/cbf.290070111.
  • Prestes AS, Dos Santos MM, Ecker A, Zanini D, Schetinger MR, Rosemberg DB, da Rocha JB, Barbosa NV. Evaluation of methylglyoxal toxicity in human erythrocytes, leukocytes and platelets. Toxicol Mech Methods 2017;27(4):307–317. doi:10.1080/15376516.2017.1285971.
  • Blache D, Bourdon E, Salloignon P, Lucchi G, Ducoroy P, Petit JM, Verges B, Lagrost L. Glycated albumin with loss of fatty acid binding capacity contributes to enhanced arachidonate oxygenation and platelet hyperactivity: relevance in patients with type 2 diabetes. Diabetes 2015;64(3):960–972. doi:10.2337/db14-0879.
  • Davies SS, Brantley EJ, Voziyan PA, Amarnath V, Zagol-Ikapitte I, Boutaud O, Hudson BG, Oates JA, Roberts LJ 2nd. Pyridoxamine analogues scavenge lipid-derived gamma-ketoaldehydes and protect against H2O2-mediated cytotoxicity. Biochemistry 2006;45:15756–15767. doi:10.1021/bi061860g.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.