924
Views
6
CrossRef citations to date
0
Altmetric
Special Review Series

Release of α-granule contents during platelet activation

Pages 491-502 | Received 18 Oct 2020, Accepted 28 Mar 2021, Published online: 25 Sep 2021

References

  • Golebiewska EM, Poole AW, Platelet secretion: from haemostasis to wound healing and beyond. Blood Rev 2015; 29(3): 153–162. dx.doi.org/10.1016/j.blre.2014.10.003
  • Blair P, Platelet FR, α-granules: basic biology and clinical correlates. Blood Rev 2009; 23(4): 177–189. 10.1016/j.blre.2009.04.001
  • Coppinger JA, Cagney G, Toomey S, Kislinger T, Belton O, McRedmond JP, Cahill DJ, Emili A, Fitzgerald DJ, Maguire PB, Characterization of the proteins released from activated platelets leads to localization of novel platelet proteins in human atherosclerotic lesions. Blood 2004; 103(6): 2096–2104. 10.1182/blood-2003-08-2804
  • Maynard DM, Heijnen HFG, Horne MK, White JG, Gahl WA, Proteomic analysis of platelet α-granules using mass spectrometry. J Thromb Haemost 2007; 5(9): 1945–1955. 10.1111/j.1538-7836.2007.02690.x
  • Piersma SR, Broxterman HJ, Kapci M, de Haas RR, Hoekman K, Verheul HMW, Jiménez CR, Proteomics of the TRAP-induced platelet releasate. J Proteomics 2009; 72(1): 91–109. 10.1016/j.jprot.2008.10.009
  • Parsons MEM, Szklanna PB, Guerrero JA, Wynne K, Dervin F, O’Connell K, Allen S, Egan K, Bennett C, McGuigan C, et al. Platelet releasate proteome profiling reveals a core set of proteins with low variance between healthy adults. Proteomics 2018; 18(15): 10.1002/pmic.201800219
  • Pokrovskaya ID, Aronova MA, Kamykowski JA, Prince AA, Hoyne JD, Calco GN, Kuo BC, He Q, Leapman RD, Storrie B, STEM tomography reveals that the canalicular system and α-granules remain separate compartments during early secretion stages in blood platelets. J. Thromb. Haemost 2016; 14(3): 572–584. 10.1111/jth.13225
  • Pokrovskaya ID, Yadav S, Rao A, McBride E, Kamykowski JA, Zhang G, Aronova MA, Leapman RD, Storrie B, 3D ultrastructural analysis of α-granule, dense granule, mitochondria, and canalicular system arrangement in resting human platelets. Res. Pract. Thromb. Haemost 2020; 4(1): 72–85. 10.1002/rth2.12260
  • King SM, Reed GL, Development of platelet secretory granules. Semin Cell Dev Biol 2002; 13(4): 293–302. 10.1016/S1084952102000599
  • Frojmovic MM, Milton JG, Human platelet size, shape, and related functions in health and disease. Physiological Reviews 1982; 62(1): 185–261. 10.1152/physrev.1982.62.1.185
  • Pokrovskaya I, Tobin M, Desai R, Aronova MA, Kamykowski JA, Zhang G, Joshi S, Whiteheart SW, Leapman RD, Storrie B, Structural analysis of resting mouse platelets by 3D-EM reveals an unexpected variation in α-granule shape. Platelets 2020; 1–10. 10.1080/09537104.2020.1799970
  • Van Nispen Tot Pannerden H, De HF, Geerts W, Posthuma G, Van Dijk S, Heijnen HFG, The platelet interior revisited: electron tomography reveals tubular α-granule subtypes. Blood 2010; 116(7): 1147–1156. 10.1182/blood-2010-02-268680
  • Eckly A, Rinckel JY, Proamer F, Ulas N, Joshi S, Whiteheart SW, Gachet C, Respective contributions of single and compound granule fusion to secretion by activated platelets. Blood 2016; 128(21): 2538–2549. 10.1182/blood-2016-03-705681
  • Raccuglia G, Gray platelet syndrome: A variety of qualitative. Am J Med 1971; 51(6): 818–828. 10.1016/0002-9343(71)90311-1
  • Rosa JP, George JN, Bainton DF, Nurden AT, Caen JP, McEver RP, Gray platelet syndrome. Demonstration of alpha granule membranes that can fuse with the cell surface. J. Clin. Invest 1987;
  • Maynard DM, Heijnen HFG, Gahl WA, Gunay-Aygun M, The α-granule proteome: novel proteins in normal and ghost granules in gray platelet syndrome. J Thromb Haemost 2010; 8(8): 1786–1796. 10.1111/j.1538-7836.2010.03932.x
  • Kahr WHA, Lo RW, Li L, Pluthero FG, Christensen H, Ni R, Vaezzadeh N, Hawkins CE, Weyrich AS, Di Paola J, et al. Abnormal megakaryocyte development and platelet function in Nbeal2−/− mice. Blood 2013; 122(19): 3349–3358. 10.1182/blood-2013-04-499491
  • Nurden AT, Nurden P, The gray platelet syndrome: clinical spectrum of the disease. Blood Rev 1997; 77(6): 21–36. 10.1016/j.blre.2005.12.003
  • Gunay-Aygun M, Zivony-Elboum Y, Gumruk F, Geiger D, Cetin M, Khayat M, Kleta R, Kfir N, Anikster Y, Chezar J, et al. Gray platelet syndrome: natural history of a large patient cohort and locus assignment to chromosome 3p. Blood 2010; 116(23): 4990–5001. 10.1182/blood-2010-05-286534
  • Deppermann C, Cherpokova D, Nurden P, Schulz J-N, Thielmann I, Kraft P, Vögtle T, Kleinschnitz C, Dütting S, Krohne G, et al. Gray platelet syndrome and defective thrombo-inflammation in Nbeal2-deficient mice. J. Clin. Invest 2013; 123(8): 3331–3342. 10.1172/JCI69210
  • Guerrero JA, Bennett C, Van Der Weyden L, McKinney H, Chin M, Nurden P, McIntyre Z, Cambridge EL, Estabel J, Wardle-Jones H, et al. Gray platelet syndrome: proinflammatory megakaryocytes and α-granule loss cause myelofibrosis and confer metastasis resistance in mice. Blood 2014; 124(24): 3624–3635. 10.1182/blood-2014-04-566760
  • Knight DE, Scrutton MC, Direct evidence for a role for Ca2+ in amine storage granule secretion by human platelets. Thromb Res 1980; 20(4): 437–446. 10.1016/0049-3848(80)90282-0
  • Rizo J, Xu J, The synaptic vesicle release machinery. Annu. Rev. Biophys 2015; 44(1): 339–367. 10.1146/annurev-biophys-060414-034057
  • Joshi S, Whiteheart SW, The nuts and bolts of the platelet release reaction. Platelets 2017; 28(2): 129–137. 10.1080/09537104.2016.1240768
  • Stenberg PE, Shuman MA, Levine SP, Bainton DF, Redistribution of alpha-granules and their contents in thrombin-stimulated platelets. J. Cell Biol 1984; 98(2): 748–760. 10.1083/jcb.98.2.748
  • White JG, Krumwiede M, Further studies of the secretory pathway in thrombin-stimulated human platelets. Blood 1987; 69(4): 1196–1203. 10.1182/blood.V69.4.1196.1196
  • Pokrovskaya ID, Joshi S, Tobin M, Desai R, Aronova MA, Kamykowski JA, Zhang G, Whiteheart SW, Leapman RD, Storrie B, SNARE-dependent membrane fusion initiates α-granule matrix decondensation in mouse platelets. Blood Adv 2018; 2(21): 2947–2958. 10.1182/bloodadvances.2018019158
  • Pokrovskaya ID, Tobin M, Desai R, Joshi S, Kamykowski JA, Zhang G, Aronova MA, Whiteheart SW, Leapman RD, Storrie B, Canalicular system reorganization during mouse platelet activation as revealed by 3D ultrastructural analysis. Platelets 2021; 32(1): 97–104. 10.1080/09537104.2020.1719993
  • Söllner T, Bennett MK, Whiteheart SW, Scheller RH, Rothman JE, A protein assembly-disassembly pathway in vitro that may correspond to sequential steps of synaptic vesicle docking, activation, and fusion. Cell 1993; 75(3): 409–418. 10.1016/0092-8674(93)90376-2
  • Graham GJ, Ren Q, Dilks JR, Blair P, Whiteheart SW, Flaumenhaft R, Endobrevin/VAMP-8–dependent dense granule release mediates thrombus formation in vivo. Blood 2009; 114(5): 1083–1090. 10.1182/blood-2009-03-210211
  • Burkhart JM, Vaudel M, Gambaryan S, Radau S, Walter U, Martens L, Geiger J, Sickmann A, Zahedi RP, The first comprehensive and quantitative analysis of human platelet protein composition allows the comparative analysis of structural and functional pathways. Blood 2012; 120(15): 73–83. 10.1182/blood-2012-04-416594
  • Zeiler M, Moser M, Mann M, Copy number analysis of the murine platelet proteome spanning the complete abundance range. Mol Cell Proteomics 2014; 13(12): 3435–3445. 10.1074/mcp.M114.038513
  • Koseoglu S, Peters CG, Fitch-Tewfik JL, Aisiku O, Danglot L, Galli T, Flaumenhaft R, VAMP-7 links granule exocytosis to actin reorganization during platelet activation. Blood 2015; 126(5): 651–660. 10.1182/blood-2014-12-618744
  • Joshi S, Banerjee M, Zhang J, Kesaraju A, Pokrovskaya ID, Storrie B, Whiteheart SW, Alterations in platelet secretion differentially affect thrombosis and hemostasis. Blood Adv 2018; 2(17): 2187–2198. 10.1182/bloodadvances.2018019166
  • Ren Q, Barber HK, Crawford GL, Karim ZA, Zhao C, Choi W, Wang -C-C, Hong W, Whiteheart SW, Endobrevin/VAMP-8 is the primary v-SNARE for the platelet release reaction. Mol. Biol. Cell 2007; 18(1): 24–33. 10.1091/mbc.e06-09-0785
  • Williams CM, Li Y, Brown E, Poole AW, Platelet-specific deletion of SNAP23 ablates granule secretion, substantially inhibiting arterial and venous thrombosis in mice. Blood Adv 2018; 2(24): 3627–3636. 10.1182/bloodadvances.2018023291
  • Zhang J, Huang Y, Chen J, Zhu H, Whiteheart SW, Dynamic cycling of t-SNARE acylation regulates platelet exocytosis. J Biol Chem 2018; 293(10): 3593–3606. 10.1074/jbc.RA117.000140
  • Kozlovsky Y, Kozlov MM. Stalk model of membrane fusion: Solution of energy crisis. Biophys. J. 2002; 82(2): 882–895.
  • Bao H, Das D, Courtney NA, Jiang Y, Briguglio JS, Lou X, Roston D, Cui Q, Chanda B, Chapman ER, Dynamics and number of trans-SNARE complexes determine nascent fusion pore properties. Nature 2018; 554(7691): 260–263. 10.1038/nature25481
  • Spessott WA, Sanmillan ML, McCormick ME, Patel N, Villanueva J, Zhang K, Nichols KE, Giraudo CG, Hemophagocytic lymphohistiocytosis caused by dominant-negative mutations in STXBP2 that inhibit SNARE-mediated membrane fusion. Blood 2015; 125(10): 1566–1577. 10.1182/blood-2014-11-610816
  • Morrell CN, Matsushita K, Chiles K, Scharpf RB, Yamakuchi M, Mason RJA, Bergmeier W, Mankowski JL, Baldwin WM, Faraday N, et al. Regulation of platelet granule exocytosis by S-nitrosylation. Proc. Natl. Acad. Sci. U. S. A 2005; 102(10): 3782–3787. 10.1073/pnas.0408310102
  • Karim ZA, Zhang J, Banerjee M, Chicka MC, Al Hawas R, Hamilton TR, Roche PA, Whiteheart SW, IκB kinase phosphorylation of SNAP-23 controls platelet secretion. Blood 2013; 121(22): 4567–4574. 10.1182/blood-2012-11-470468
  • Cardenas EI, Gonzalez R, Breaux K, Da Q, Gutierrez BA, Ramos MA, Cardenas RA, Burns AR, Rumbaut RE, Adachi R, et al. Munc18-2, but not Munc18-1 or Munc18-3, regulates platelet exocytosis, hemostasis, and thrombosis. J Biol Chem 2019; 294(13): 4784–4792. 10.1074/jbc.RA118.006922
  • Cardenas EI, Breaux K, Da Q, Flores JR, Ramos MA, Tuvim MJ, Burns AR, Rumbaut RE, Adachi R, Platelet Munc13-4 regulates hemostasis, thrombosis and airway inflammation. Haematologica 2018; 103(7): 1235–1244. 10.3324/haematol.2017.185637
  • Flaumenhaft R, Dilks JR, Rozenvayn N, Monahan-Earley RA, Feng D, Dvorak AM, The actin cytoskeleton differentially regulates platelet α-granule and dense-granule secretion. Blood 2005; 105(10): 3879–3887. blood-2004-04-1392
  • Chanzu H, Lykins J, Wigna-Kumar S, Joshi S, Pokrovskaya I, Storrie B, Pejler G, Wood JP, Whiteheart SW, Platelet α-granule cargo packaging and release are affected by the luminal proteoglycan, serglycin. J Thromb Haemost 2021; 19: 1082-1095. 10.1111/jth.15243
  • Wijten P, Van Holten T, Woo LL, Bleijerveld OB, Roest M, Heck AJR, Scholten A, High precision platelet releasate definition by quantitative reversed protein profiling—brief report. Arterioscler. Thromb. Vasc. Biol 2013; 33(7): 1635–1638. 10.1161/ATVBAHA.113.301147
  • Van Holten TC, Bleijerveld OB, Wijten P, De Groot PG, Heck AJR, Barendrecht AD, Merkx TH, Scholten A, Roest M, Quantitative proteomics analysis reveals similar release profiles following specific PAR-1 or PAR-4 stimulation of platelets. Cardiovasc Res 2014; 103(1): 140–146. 10.1093/cvr/cvu113
  • Zufferey A, Schvartz D, Nolli S, Reny J-L, Sanchez J-C, Fontana P, Characterization of the platelet granule proteome: evidence of the presence of MHC1 in alpha-granules. J. Proteomics 2014; 101: 130–140.10.1016/j.jprot.2014.02.008
  • O’Connor R, Cryan LM, Wynne K, De Stefani A, Fitzgerald D, O’Brien C, Cagney G, Proteomics strategy for identifying candidate bioactive proteins in complex mixtures: application to the platelet releasate. J. Biomed. Biotechnol 2010; 2010: 107859.10.1155/2010/107859
  • Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ, Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and granules. Blood 1999; 94(11): 3791–3799. 10.1182/blood.V94.11.3791
  • Aatonen MT, Ohman T, Nyman TA, Laitinen S, Grönholm M, Siljander PR-M, Isolation and characterization of platelet-derived extracellular vesicles. J Extracell Vesicles 2014. 3:1, DOI: 10.3402/jev.v3.24692
  • Berger G, Massé JM, Cramer EM, Alpha-granule membrane mirrors the platelet plasma membrane and contains the glycoproteins Ib, IX, and V. Blood 1996; 87(4): 1385–1395. 10.1182/blood.V87.4.1385.bloodjournal8741385
  • Peters CG, Michelson AD, Flaumenhaft R, Granule exocytosis is required for platelet spreading: differential sorting of α-granules expressing VAMP-7. Blood 2012; 120(1): 199–206. 10.1182/blood-2011-10-389247
  • Italiano JE, Richardson JL, Patel-Hett S, Battinelli E, Zaslavsky A, Short S, Ryeom S, Folkman J, Klement GL, Angiogenesis is regulated by a novel mechanism: pro- and antiangiogenic proteins are organized into separate platelet α granules and differentially released. Blood 2008; 111(3): 1227–1233. 10.1182/blood-2007-09-113837
  • Sehgal S, Storrie B, Evidence that differential packaging of the major platelet granule proteins von Willebrand factor and fibrinogen can support their differential release. J Thromb Haemost 2007; 5(10): 2009–2016. 10.1111/j.1538-7836.2007.02698.x
  • Smith CW, Raslan Z, Parfitt L, Khan AO, Patel P, Senis YA, Mazharian A, TREM-like transcript 1: a more sensitive marker of platelet activation than P-selectin in humans and mice. Blood Adv 2018; 2(16): 2072–2078. 10.1182/bloodadvances.2018017756
  • Barrow AD, Astoul E, Floto A, Brooke G, Relou IAM, Jennings NS, Smith KGC, Ouwehand W, Farndale RW, Alexander DR, et al. Cutting edge: TREM-like transcript-1, a platelet immunoreceptor tyrosine-based inhibition motif encoding costimulatory immunoreceptor that enhances, rather than inhibits, calcium signaling via SHP-2. J. Immunol 2004; 172(10): 5838–5842. 10.4049/jimmunol.172.10.5838
  • Battinelli EM, Thon JN, Okazaki R, Peters CG, Vijey P, Wilkie AR, Noetzli LJ, Flaumenhaft R, Italiano JE, Megakaryocytes package contents into separate α-granules that are differentially distributed in platelets. Blood Adv 2019; 3(20): 3092–3098. 10.1182/bloodadvances.2018020834
  • Ambrosio AL, Di Pietro SM, Mechanism of platelet a-granule biogenesis: study of cargo transport and the VPS33B-VPS16B complex in a model system. Blood Adv 2019; 3(17): 2617–2626. 10.1182/bloodadvances.2018028969
  • Kamykowski J, Carlton P, Sehgal S, Storrie B, Quantitative immunofluorescence mapping reveals little functional coclustering of proteins within platelet α-granules. Blood 2011; 118(5): 1370–1373. 10.1182/blood-2011-01-330910
  • Abu El-Makrem MA, Mahmoud YZ, Sayed D, Nassef NM, Abd El-Kader SS, Zakhary M, Ghazaly T, Matta R, Fong KP, Barry C, et al. The role of platelets CD40 ligand (CD154) in acute coronary syndromes. Thromb. Res 2009; 124(6): 683–688. 10.1016/j.thromres.2009.06.028
  • Rönnlund D, Yang Y, Blom H, Auer G, Widengren J, Fluorescence nanoscopy of platelets resolves platelet-state specific storage, release and uptake of proteins, opening up future diagnostic applications. Adv Healthc Mater 2012; 1(6): 707–713. 10.1002/adhm.201200172
  • Khan AO, Pike JA, Super-resolution imaging and quantification of megakaryocytes and platelets. Platelets 2020; 31(5): 559–569. 10.1080/09537104.2020.1732321
  • Whiteheart SW, Platelet granules: surprise packages. Blood 2011; 118(5): 1190–1191. 10.1182/blood-2011-06-359836
  • Bambace NM, Levis JE, Holmes CE, The effect of P2Y-mediated platelet activation on the release of VEGF and endostatin from platelets. Platelets 2010; 21(2): 85–93. 10.3109/09537100903470298
  • Chatterjee M, Huang Z, Zhang W, Jiang L, Hultenby K, Zhu L, Hu H, Nilsson GP, Li N, Distinct platelet packaging, release, and surface expression of proangiogenic and antiangiogenic factors on different platelet stimuli. Blood 2011; 117(14): 3907–3911. 10.1182/blood-2010-12-327007
  • Battinelli EM, Markens BA, Italiano JE, Release of angiogenesis regulatory proteins from platelet alpha granules: modulation of physiologic and pathologic angiogenesis. Blood 2011; 118(5): 1359–1369. 10.1182/blood-2011-02-334524
  • Ma L, Perini R, Mcknight W, Dicay M, Klein A, Hollenberg MD, Wallace JL, Proteinase-activated receptors 1 and 4 counter-regulate endostatin and VEGF release from human platelets. Proc. Natl. Acad. Sci. U. S. A 2005; 102(1): 216–220. 10.1073/pnas.0406682102
  • Nylander M, Osman A, Ramström S, Åklint E, Larsson A, Lindahl TL, The role of thrombin receptors PAR1 and PAR4 for PAI-1 storage, synthesis and secretion by human platelets. Thromb Res 2012; 129(4): 51–58. 10.1016/j.thromres.2011.12.021
  • Jonnalagadda D, Izu LT, Whiteheart SW, Platelet secretion is kinetically heterogeneous in an agonist-responsive manner. Blood 2012; 120(26): 5209–5216. 10.1182/blood-2012-07-445080
  • Etulain J, Mena HA, Negrotto S, Schattner M, Stimulation of PAR-1 or PAR-4 promotes similar pattern of VEGF and endostatin release and pro-angiogenic responses mediated by human platelets. Platelets 2015; 26(8): 799–804. 10.3109/09537104.2015.1051953
  • Martín-Granado V, Ortiz-Rivero S, Carmona R, Gutiérrez-Herrero S, Barrera M, San-Segundo L, Sequera C, Perdiguero P, Lozano F, Martín-Herrero F, et al. C3G promotes a selective release of angiogenic factors from activated mouse platelets to regulate angiogenesis and tumor metastasis. Oncotarget2017.  8: 110994-111011.
  • Fateh-Moghadam S, Li Z, Ersel S, Reuter T, Htun P, Plockinger U, Bocksch W, Dietz R, Gawaz M, Platelet degranulation is associated with progression of intima-media thickness of the common carotid artery in patients with diabetes mellitus type 2. Arterioscler. Thromb. Vasc. Biol 2005; 25(6): 1299–1303. 10.1161/01.ATV.0000165699.41301.c5
  • Gurbel PA, Bliden KP, The stratification of platelet reactivity and activation in patients with stable coronary artery disease on aspirin therapy. Thromb Res 2003; 112(1–2): 9–12. 10.1016/j.thromres.2003.09.029
  • Nomura S, OmotoS, Yokoi T, Fujita S, Ozasa R, Eguchi N, Shouzu A, Effects of miglitol in platelet-derived microparticle, adiponectin, and selectin level in patients with type 2 diabetes mellitus. Int. J. Gen. Med 2011; 539. 10.2147/IJGM.S22115
  • Takemoto A, Okitaka M, Takagi S, Takami M, Sato S, Nishio M, Okumura S, Fujita N, A critical role of platelet TGF-β release in podoplanin-mediated tumour invasion and metastasis. Sci. Rep 2017; 7(1): 1–12. 10.1038/srep42186
  • Cha JK, Jeong MH, Kim EK, Lim YJ, Ha BR, Kim SH, Kim JW, Surface expression of P-selectin on platelets is related with clinical worsening in acute ischemic stroke. J. Korean Med. Sci 2002; 17(6): 811–816. 10.3346/jkms.2002.17.6.811
  • Huo Y, Schober A, Forlow SB, Smith DF, Hyman MC, Jung S, Littman DR, Weber C, Ley K, Circulating activated platelets exacerbate atherosclerosis in mice deficient in apolipoprotein E. Nat. Med 2003; 9(1): 61–67. 10.1038/nm810
  • Nagy B, Szúk T, Debreceni IB, Kappelmayer J, Platelet-derived microparticle levels are significantly elevated in patients treated by elective stenting compared to subjects with diagnostic catheterization alone. Platelets 2010; 21(2): 147–151. 10.3109/09537100903477582
  • Ilich A, Kumar V, Henderson M, Mallick R, Wells P, Carrier M, Key NS, Biomarkers in cancer patients at risk for venous thromboembolism: data from the AVERT study. Thromb. Res 2020; 191(September2019): S31–S36. 10.1016/S0049-3848(20)30394-7
  • Nagy BJ, Debreceni IB, Kappelmayer J, Flow cytometric investigation of classical and alternative platelet activation markers. EJIFCC 2013; 23(4): 124–134.
  • Csongrádi É, Nagy B, Fulop T, Varga Z, Karányi Z, Magyar M, Oláh L, Papp M, Facskó A, Kappelmayer J, et al. Increased levels of platelet activation markers are positively associated with carotid wall thickness and other atherosclerotic risk factors in obese patients. Thromb. Haemost 2011; 106(10): 683–692. 10.1160/TH11-01-0030
  • Mumford AD, Frelinger AL, Gachet C, Gresele P, Noris P, Harrison P, Mezzano D, A review of platelet secretion assays for the diagnosis of inherited platelet secretion disorders. Thromb. Haemost 2015; 114(7): 14–25. 10.1160/TH14-11-0999
  • Dovlatova N, Lordkipanidzé M, Lowe GC, Dawood B, May J, Heptinstall S, Watson SP, Fox SC, Evaluation of a whole blood remote platelet function test for the diagnosis of mild bleeding disorders. J. Thromb. Haemost 2014; 12(5): 660–665. 10.1111/jth.12555
  • Stenberg PE, McEver RP, Shuman MA, Jacques YV, Bainton DF, A platelet alpha-granule membrane protein (GMP-140) is expressed on the plasma membrane after activation. J Cell Biol 1985; 101(3): 880–886. 10.1083/jcb.101.3.880
  • Yang J, Furie BC, Furie B, The biology of P-selectin glycoprotein ligand-1: its role as a selectin counterreceptor in Leukocyte-Endothelial and Leukocyte-platelet interaction. Thromb Haemost 1999; 81(1): 1–7. 10.1055/s-0037-1614407
  • Falati S, Liu Q, Gross P, Merrill-Skoloff G, Chou J, Vandendries E, Celi A, Croce K, Furie BC, Furie B, Accumulation of tissue factor into developing thrombi in vivo is dependent upon microparticle P-selectin glycoprotein ligand 1 and platelet P-selectin. J. Exp. Med 2003; 197(11): 1585–1598. 10.1084/jem.20021868
  • De Witt SM, Swieringa F, Cavill R, Lamers MME, Van Kruchten R, Mastenbroek T, Baaten C, Coort S, Pugh N, Schulz A, et al. Identification of platelet function defects by multi-parameter assessment of thrombus formation. Nat. Commun 2014; 5(1): 1–13. 10.1038/ncomms5257
  • Israels SJ, Gerrard JM, Jacques YV, McNicol A, Cham B, Nishibori M, Bainton DF, Platelet dense granule membranes contain both granulophysin and P-selectin (GMP-140). Blood 1992; 80(1): 143–152. 10.1182/blood.V80.1.143.143
  • Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R, Diamond SL, Brass LF, Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood 2013; 121(10): 1875–1885. 10.1182/blood-2012-09-457739
  • Welsh JD, Poventud-Fuentes I, Sampietro S, Diamond SL, Stalker TJ, Brass LF, Hierarchical organization of the hemostatic response to penetrating injuries in the mouse macrovasculature. J. Thromb. Haemost 2017; 15(3): 526–537. 10.1111/jth.13600
  • Tomaiuolo M, Matzko CN, Poventud-Fuentes I, Weisel JW, Brass LF, Stalker TJ, Interrelationships between structure and function during the hemostatic response to injury. Proc. Natl. Acad. Sci 2019; 116(6): 2243–2252. 10.1073/pnas.1813642116
  • Stalker TJ, Mouse laser injury models: variations on a theme. Platelets 2020; 31(4): 423–431. 10.1080/09537104.2020.1748589
  • Zeiger F, Stephan S, Hoheisel G, Pfeiffer D, Ruehlmann C, Koksch M, P-Selectin expression, platelet aggregates, and platelet-derived microparticle formation are increased in peripheral arterial disease. Blood Coagul. Fibrinolysis an Int. J. Haemost. Thromb 2000; 11(8): 723–728. 10.1097/00001721-200012000-00005
  • Maugeri N, Malato S, Femia EA, Pugliano M, Campana L, Lunghi F, Rovere-Querini P, Lussana F, Podda G, Cattaneo M, et al. Clearance of circulating activated platelets in polycythemia vera and essential thrombocythemia. Blood 2011; 118(12): 3359–3366. 10.1182/blood-2011-02-337337
  • Nagy BJ, Csongrádi E, Bhattoa HP, Balogh I, Blaskó G, Paragh G, Kappelmayer J, Káplár M, Investigation of Thr715Pro P-selectin gene polymorphism and soluble P-selectin levels in type 2 diabetes mellitus. Thromb. Haemost 2007; 98(7): 186–191. 10.1160/TH06-11-0628
  • Gurney D, Lip GYH, Blann AD, A reliable plasma marker of platelet activation: does it exist? Am J Hematol 2002; 70(2): 139–144. 10.1002/ajh.10097
  • Tsai NW, Chang WN, Shaw CF, Jan C-R, Chang H-W, Huang C-R, Chen S-D, Chuang Y-C, Lee L-H, Wang H-C, et al. Levels and value of platelet activation markers in different subtypes of acute non-cardio-embolic ischemic stroke. Thromb. Res 2009; 124(2): 213–218. 10.1016/j.thromres.2009.01.012
  • Stellos K, Bigalke B, Stakos D, Henkelmann N, Gawaz M, Platelet-bound P-selectin expression in patients with coronary artery disease: impact on clinical presentation and myocardial necrosis, and effect of diabetes mellitus and anti-platelet medication. J Thromb Haemost 2010; 8(1): 205–207. 10.1111/j.1538-7836.2009.03659.x
  • Villagra J, Shiva S, Hunter LA, Machado RF, Gladwin MT, Kato GJ, Platelet activation in patients with sickle disease, hemolysis-associated pulmonary hypertension, and nitric oxide scavenging by cell-free hemoglobin. Blood 2007; 110(6): 2166–2172. 10.1182/blood-2006-12-061697
  • Kannan M, Ahmad F, Saxena R, Platelet activation markers in evaluation of thrombotic risk factors in various clinical settings. Blood Rev 2019; 37: 100583. 10.1016/j.blre.2019.05.007
  • Shen L, Yang T, Xia K, Yan Z, Tan J, Li L, Qin Y, Shi W, P-selectin (CD62P) and soluble TREM-like transcript-1 (sTLT-1) are associated with coronary artery disease: a case control study. BMC Cardiovasc. Disord 2020; 20(1): 387. 10.1186/s12872-020-01663-2
  • Draz N, Hamdy MS, Gomaa Y, Ramzy AA, Soluble P-selectin is a marker of plaque destabilization in unstable angina. Egypt. J. Immunol 2003; 10(1): 83–87.
  • Preston RA, Coffey JO, Materson BJ, Ledford M, Alonso AB, Elevated platelet P-selectin expression and platelet activation in high risk patients with uncontrolled severe hypertension. Atherosclerosis 2007; 192(1): 148–154. 10.1016/j.atherosclerosis.2006.04.028
  • Michelson AD, Barnard MR, Krueger LA, Valeri CR, Furman MI, Circulating monocyte-platelet aggregates are a more sensitive marker of in vivo platelet activation than platelet surface P-selectin: studies in baboons, human coronary intervention, and human acute myocardial infarction. Circulation 2001; 104(13): 1533–1537. 10.1161/hc3801.095588
  • Ferroni P, Pulcinelli FM, Lenti L, Gazzaniga PP, Is soluble P-selectin determination a more reliable marker of in vivo platelet activation than CD62P flow cytometric analysis? [9]. Thromb Haemost 1999; 81(3): 472–473. 10.1055/s-0037-1614504
  • Washington AV, Schubert RL, Quigley L, Disipio T, Feltz R, Cho EH, McVicar DW, A TREM family member, TLT-1, is found exclusively in the α-granules of megakaryocytes and platelets. Blood 2004; 104(4): 1042–1047. 10.1182/blood-2004-01-0315
  • Morales J, Villa K, Gattis J, Castro W, Colon K, Lubkowski J, Sanabria P, Hunter R, Washington AV, Soluble TLT-1 modulates platelet–endothelial cell interactions and actin polymerization. Blood Coagul. Fibrinolysis 2010; 21(3): 229–236. 10.1097/MBC.0b013e3283358116
  • Washington AV, Gibot S, Acevedo I, Gattis J, Quigley L, Feltz R, De La Mota A, Schubert RL, Gomez-Rodriguez J, Cheng J, et al. TREM-like transcript-1 protects against inflammation-associated hemorrhage by facilitating platelet aggregation in mice and humans. J. Clin. Invest 2009; 119(6): 1489–1501. 10.1172/JCI36175
  • Morales-Ortíz J, Deal V, Reyes F,Maldonado-Martínez G, Ledesma N, Staback F, Croft C, Pacheco A, Ortiz-Zuazaga H, Yost CC, et al. Platelet-derived TLT-1 is a prognostic indicator in ALI/ARDS and prevents tissue damage in the lungs in a mouse model. Blood 2018; 132(23): 2495–2505. 10.1182/blood-2018-03-841593
  • Nagy Z, Mori J, Ivanova VS, Mazharian A, Senis YA, Interplay between the tyrosine kinases Chk and Csk and phosphatase PTPRJ is critical for regulating platelets in mice. Blood 2020; 135(18): 1574–1587. 10.1182/blood.2019002848
  • Lievens D, Zernecke A, Seijkens T, Soehnlein O, Beckers L, Munnix ICA, Wijnands E, Goossens P, Van Kruchten R, Thevissen L, et al. Platelet CD40L mediates thrombotic and inflammatory processes in atherosclerosis. Blood 2010; 116(20): 4317–4327. 10.1182/blood-2010-01-261206
  • André P, Srinivasa Prasad KS, Denis CV, He M, Papalia JM, Hynes RO, Phillips DR, Wagner DD, CD40L stabilizes arterial thrombi by a β3 integrin–dependent mechanism. Nat. Med 2002; 8(3): 247–252. 10.1038/nm0302-247
  • Kuijpers MJE, Mattheij NJA, Cipolla L, Van Geffen JP, Lawrence T, Donners MMPC, Boon L, Lievens D, Torti M, Noels H, et al. Platelet CD40L Modulates Thrombus Growth Via Phosphatidylinositol 3-Kinase β, and Not Via CD40 and IκB Kinase α. Arterioscler. Thromb. Vasc. Biol 2015; 35(6): 1374–1381. 10.1161/ATVBAHA.114.305127
  • Garlichs CD, Eskafi S, Raaz D,  Schmidt A, Ludwig J, Herrmann M, Klinghammer L, Daniel WG, & Schmeisser A, Patients with acute coronary syndromes express enhanced CD40 ligand/CD154 on platelets. Heart 2001; 86(6): 649–655. 10.1136/heart.86.6.649
  • Pignatelli P, Tanzilli G, Carnevale R, Di Santo S, Loffredo L, Celestini A, Proietti M, Tovaglia P, Mangieri E, Basili S, et al. Ascorbic acid infusion blunts CD40L upregulation in patients undergoing coronary stent. Cardiovasc. Ther 2011; 29(6): 385–394. 10.1111/j.1755-5922.2010.00168.x
  • Grosdidier C, Blanz KD, Deharo P, Bernot D, Poggi M, Bastelica D, Wolf D, Duerschmied D, Grino M, Cuisset T, et al. Platelet CD 40 ligand and bleeding during P2Y12 inhibitor treatment in acute coronary syndrome. Res. Pract. Thromb. Haemost 2019; 3(4): 684–694. 10.1002/rth2.12244
  • Choi W-S, Jeon O-H, Kim D-S, CD40 ligand shedding is regulated by interaction between matrix metalloproteinase-2 and platelet integrin alpha(IIb)beta(3). J Thromb Haemost 2010; 8(6): 1364–1371. 10.1111/j.1538-7836.2010.03837.x
  • Rahman M, Zhang S, Chew M, Syk I, Jeppsson B, Thorlacius H, Platelet shedding of CD40L is regulated by matrix metalloproteinase-9 in abdominal sepsis. J. Thromb. Haemost 2013; 11(7): 1385–1398. 10.1111/jth.12273
  • Basili S, Violi F. Antiplatelet drugs in the management of thrombotic/ischemic events in peripheral artery disease.
  • Kutti J, Safai-Kutti S, Zaroulis CG, Good RA, Plasma levels of β-Thromboglobulin and platelet factor 4 in relation to the venous platelet concentration. Acta Haematol 1980; 64(1): 1–5. 10.1159/000207202
  • Han P, Turpie AG, Genton E, Plasma beta-thromboglobulin: differentiation between intravascular and extravascular platelet destruction. Blood 1979; 54(5): 1192–1196. 10.1182/blood.V54.5.1192.1192
  • Chong BH, Murray B, Berndt MC, Dunlop LC, Brighton T, Chesterman CN, Plasma P-selectin is increased in thrombotic consumptive platelet disorders. Blood 1994; 83(6): 1535–1541. 10.1182/blood.V83.6.1535.1535
  • Fijnheer R, Frijns CJ, Korteweg J, Rommes H, Peters JH, Sixma JJ, Nieuwenhuis HK, The origin of P-selectin as a circulating plasma protein. Thromb. Haemost 1997; 77(6): 1081–1085. 10.1055/s-0038-1656116
  • Semenov AV, Romanov YA, Loktionova SA, Tikhomirov O Y, Khachikian MV, Vasil’ev SA, Mazurov AV, Production of soluble P-selectin by platelets and endothelial cells. Biochem 1999; 64(11): 1326–1335.
  • Mosad E, Elsayh KI, Eltayeb AA, Tissue factor pathway inhibitor and P-selectin as markers of sepsis-induced non-overt disseminated intravascular coagulopathy. Clin Appl Thromb 2011; 17(1): 80–87. 10.1177/1076029609344981
  • Laursen MA, Larsen JB, Larsen KM, Hvas A-M, Platelet function in patients with septic shock. Thromb Res 2020; 185: 33–42. 10.1016/j.thromres.2019.11.011
  • Macey MG, Bevan S, Alam S, Verghese L, Agrawal S, Beski S, Thuraisingham R, MacCallum PK, Platelet activation and endogenous thrombin potential in pre-eclampsia. Thromb. Res 2010; 125(3): e76–e81. 10.1016/j.thromres.2009.09.013
  • Cervi D, Yip TT, Bhattacharya N, Podust VN, Peterson J, Abou-Slaybi A, Naumov GN, Bender E, Almog N, Italiano JE, et al. Platelet-associated PF-4 as a biomarker of early tumor growth. Blood 2008; 111(3): 1201–1207. 10.1182/blood-2007-04-084798
  • Kamińska J, Koper OM, Siedlecka-Czykier E, Matowicka-Karna J, Bychowski J, Kemona H, The utility of inflammation and platelet biomarkers in patients with acute coronary syndromes. Saudi J. Biol. Sci 2018; 25(7): 1263–1271. 10.1016/j.sjbs.2016.10.015
  • Peterson JE, Zurakowski D, Italiano JEJ, Michel LV, Connors S, Oenick M, D’Amato RJ, Klement GL, Folkman J, VEGF, PF4 and PDGF are elevated in platelets of colorectal cancer patients. Angiogenesis 2012; 15(2): 265–273. 10.1007/s10456-012-9259-z
  • Abbasciano V, Bianchi MP, Trevisani L, Sartori S, Gilli G, Zavagli G, Platelet activation and fibrinolysis in large bowel cancer. Oncology 1995; 52(5): 381–384. 10.1159/000227493
  • Deppermann D, Andrassy K, Seelig H, Ritz E, Post D, Beta-thromboglobulin is elevated in renal failure without thrombosis. Thromb. Res 1980; 17(1–2): 63–69. 10.1016/0049-3848(80)90294-7
  • Ohkawa R, Hirowatari Y, Nakamura K, Ohkubo S, Ikeda H, Okada M, Tozuka M, Nakahara K, Yatomi Y, Platelet release of β-thromboglobulin and platelet factor 4 and serotonin in plasma samples. Clin. Biochem 2005; 38(11): 1023–1026. 10.1016/j.clinbiochem.2005.07.008
  • Ferroni P, Riondino S, Vazzana N, Santoro N, Guadagni F, Davì G, Biomarkers of platelet activation in acute coronary syndromes. Thromb. Haemost 2012; 108(12): 1109–1123. 10.1160/TH12-08-0550
  • Zaslavsky A, Baek KH, Lynch RC, Short S, Grillo J, Folkman J, Italiano JE, Ryeom S, Platelet-derived thrombospondin-1 is a critical negative regulator and potential biomarker of angiogenesis. Blood 2010; 115(22): 4605–4613. 10.1182/blood-2009-09-242065
  • Dawes J, Clemetson KJ, Gogstad GO, McGregor J, Clezardin P, Prowse CV, Pepper DS, A radioimmunoassay for thrombospondin, used in a comparative study of thrombospondin, β-thromboglobulin and platelet factor 4 in healthy volunteers. Thromb. Res 1983; 29(6): 569–581. 10.1016/0049-3848(83)90212-8
  • Wang S, Herndon ME, Ranganathan S, Godyna S, Lawler J, Argraves WS, Liau G, Internalization but not binding of thrombospondin-1 to low density lipoprotein receptor-related protein-1 requires heparan sulfate proteoglycans. J. Cell. Biochem 2004; 91(4): 766–776. 10.1002/jcb.10781
  • Hogg PJ, Jiménez BM, Chesterman CN, Identification of possible inhibitory reactive centers in thrombospondin 1 that may bind cathepsin G and neutrophil elastase. Biochemistry 1994; 33(21): 6531–6537. 10.1021/bi00187a021
  • Bonnefoy A, Legrand C, Proteolysis of subendothelial adhesive glycoproteins (fibronectin, thrombospondin, and von Willebrand factor) by plasmin, leukocyte cathepsin G, and elastase. Thromb Res 2000; 98(4): 323–332. 10.1016/S0049-3848(99)00242-X
  • Starlinger P, Moll HP, Assinger A, Nemeth C, Hoetzenecker K, Gruenberger B, Gruenberger T, Kuehrer I, Schoppmann SF, Gnant M, et al. Thrombospondin-1: a unique marker to identify in vitro platelet activation when monitoring in vivo processes. J. Thromb. Haemost 2010; 8(8): 1809–1819. 10.1111/j.1538-7836.2010.03908.x
  • Dudek AZ, Mahaseth H, Circulating angiogenic cytokines in patients with advanced non-small cell lung cancer: correlation with treatment response and survival. Cancer Invest 2005; 23(3): 193–200. 10.1081/CNV-200055949
  • Yamashita Y, Kurohiji T, Tuszynski GP, Sakai T, Shirakusa T, Plasma thrombospondin levels in patients with colorectal carcinoma. Cancer 1998; 82(4): 632–638. 10.1002/(SICI)1097-0142(19980215)82:4<632::AID-CNCR3>3.0.CO;2-N
  • Martini F, Riondino S, Basili S, Bertazzoni G, Ferroni P, In vivo platelet activation is associated with increased plasma levels of vascular endothelial growth factor. J Thromb Haemost 2003; 1(4): 853–854. 10.1046/j.1538-7836.2003.t01-3-00115.x
  • Michelson AD, Barnard MR, Hechtman HB, MacGregor H, Connolly RJ, Loscalzo J, Valeri CR, In vivo tracking of platelets: circulating degranulated platelets rapidly lose surface P-selectin but continue to circulate and function. Proc. Natl. Acad. Sci. U. S. A 1996; 93(21): 11877–11882. 10.1073/pnas.93.21.11877
  • Berger G, Hartwell DW, Wagner DD, P-selectin and platelet clearance. Blood 1998; 92(11): 4446–4452. 10.1182/blood.V92.11.4446
  • Dole VS, Bergmeier W, Patten IS, Hirahashi J, Mayadas T, Wagner D, PSGL-1 regulates platelet P-selectin-mediated endothelial activation and shedding of P-selectin from activated platelets. Thromb. Haemost 2007; 98(10): 806–812. 10.1160/TH07-03-0207
  • Bodary PF, Homeister JW, Vargas FB, Wickenheiser KJ, Cudney SS, Bahrou KL, Öhman M, Rabbani AB, Eitzman DT, Generation of soluble P- and E-selectins in vivo is dependent on expression of P-selectin glycoprotein ligand-1. J. Thromb. Haemost 2007; 5(3): 599–603. 10.1111/j.1538-7836.2007.02388.x
  • Johnston GI, Bliss GA, Newman PJ, McEver RP, Structure of the human gene encoding granule membrane protein-140, a member of the selectin family of adhesion receptors for leukocytes. J. Biol. Chem 1990; 265(34): 21381–21385. 10.1016/S0021-9258(17)45372-5
  • Ishiwata N, Takio K, Katayama M, Watanabe K, Titani K, Ikeda Y, Handa M, Alternatively spliced isoform of P-selectin is present in vivo as a soluble molecule. J. Biol. Chem 1994; 269(38): 23708–23715. 10.1016/S0021-9258(17)31573-9
  • McEver RP, Beckstead JH, Moore KL, Marshall-Carlson L, Bainton DF, GMP-140, a platelet alpha-granule membrane protein, is also synthesized by vascular endothelial cells and is localized in Weibel-Palade bodies. J. Clin. Invest 1989; 84(1): 92–99. 10.1172/JCI114175
  • Ferroni P, Martini F, Riondino S, La Farina F, Magnapera A, Ciatti F, Guadagni F, Soluble P-selectin as a marker of in vivo platelet activation. Clin. Chim. Acta 2009; 399(1–2): 88–91. 10.1016/j.cca.2008.09.018
  • Body R, Pemberton P, Ali F, McDowell G, Carley S, Smith A, Mackway-Jones K,  Structural analysis of resting mouse platelets by 3D-EM reveals an unexpected variation in α-granule shape. Clin. Chim. Acta 2011; 412(7–8): 614–618. 10.1016/j.cca.2010.12.016
  • Tantry US, Bliden KP, Suarez TA, Kreutz RP, Dichiara J, Gurbel PA, Hypercoagulability, platelet function, inflammation and coronary artery disease acuity: results of the Thrombotic RIsk Progression (TRIP) study. Platelets 2010; 21(5): 360–367. 10.3109/09537100903548903
  • Ridker PM, Buring JE, Soluble RN, Soluble P-selectin and the risk of future cardiovascular events. Circulation 2001; 103(4): 491–495. 10.1161/01.CIR.103.4.491
  • Hillis GS, Terregino C, Taggart P, Killian A, Zhao N, Dalsey WC, Mangione A, Elevated soluble P-selectin levels are associated with an increased risk of early adverse events in patients with presumed myocardial ischemia. Am. Heart J 2002; 143(2): 235–241. 10.1067/mhj.2002.120303
  • Rectenwald JE, Myers DD, Hawley AE, Longo C, Henke PK, Guire KE, Schmaier AH, Wakefield TW, D-dimer, P-selectin, and microparticles: novel markers to predict deep venous thrombosis: a pilot study. Thromb. Haemost 2005; 94(12): 1312–1317. 10.1160/TH05-06-0426
  • Königsbrügge O, Pabinger I, Ay C, Risk factors for venous thromboembolism in cancer: novel findings from the Vienna Cancer and Thrombosis Study (CATS). Thromb Res 2014; 133(SUPPL. 2): 39–43. 10.1016/S0049-3848(14)50007-2
  • Ay C, Simanek R, Vormittag R, Dunkler D, Alguel G, Koder S, Kornek G, Marosi C, Wagner O, Zielinski C, et al. High plasma levels of soluble P-selectin are predictive of venous thromboembolism in cancer patients: results from the Vienna Cancer and Thrombosis Study (CATS). Blood 2008; 112(7): 2703–2708. 10.1182/blood-2008-02-142422
  • Grilz E, Marosi C, Königsbrügge O, Riedl J, Posch F, Lamm W, Lang IM, Pabinger I, Ay C, Association of complete blood count parameters, d-dimer, and soluble P-selectin with risk of arterial thromboembolism in patients with cancer. J. Thromb. Haemost 2019; 17(8): 1335–1344. 10.1111/jth.14484
  • Van Es N, Louzada M, Carrier M, Tagalakis V, Gross PL, Shivakumar S, Rodger MA, Wells PS, Predicting the risk of recurrent venous thromboembolism in patients with cancer: a prospective cohort study. Thromb. Res 2018; 163: 41–46.10.1016/j.thromres.2018.01.009
  • Reitter E-M, Kaider A, Ay C, Quehenberger P, Marosi C, Zielinski C, Pabinger I, Longitudinal analysis of hemostasis biomarkers in cancer patients during antitumor treatment. J. Thromb. Haemost 2016; 14(2): 294–305. 10.1111/jth.13218
  • Gattis JL, Washington AV, Chisholm MM, Quigley L, Szyk A, McVicar DW, Lubkowski J, The structure of the extracellular domain of triggering receptor expressed on myeloid cells like transcript-1 and evidence for a naturally occurring soluble fragment. J. Biol. Chem 2006; 281(19): 13396–13403. 10.1074/jbc.M600489200
  • Fong KP, Barry C, Tran AN, Traxler EA, Wannemacher KM, Tang H-Y, Speicher KD, Blair IA, Speicher DW, Grosser T, et al. Deciphering the human platelet sheddome. Blood 2011; 117(1): 15–26. 10.1182/blood-2010-05-283838
  • Morales-Ortíz J, Rondina MT, Brown SM, Grissom C, Washington AV, High levels of soluble triggering receptor expressed on Myeloid cells–like Transcript (TLT)-1 are associated with acute respiratory distress syndrome. Clin. Appl. Thromb. Off. J. Int. Acad. Clin. Appl. Thromb 2001; 86(6): 1122–1127. 10.1177/1076029618774149
  • Esponda OL, Hunter R, Del Río JRR, Washington AV, Levels of soluble TREM-like transcript 1 in patients presenting to the emergency department with chest pain. Clin Appl Thromb Off J Int Acad Clin Appl Thromb 2015; 21(1): 30–34. 10.1177/1076029614547298
  • Fu R, Song X, Su D, Li S, Gao L, Ji C, Serum STLT-1 and bilirubin levels in patients with acute coronary syndrome and correlation with prognosis. Exp. Ther. Med 2018; 16(1): 241–245. 10.3892/etm.2018.6137
  • Antoniades C, Bakogiannis C, Tousoulis D, Antonopoulos AS, Stefanadis C, The CD40/CD40 Ligand system. Linking inflammation with Atherothrombosis. J Am Coll Cardiol 2009; 54(8): 669–677. 10.1016/j.jacc.2009.03.076
  • Mason PJ, Chakrabarti S, Albers AA, Rex S, Vitseva O, Varghese S, Freedman JE, Plasma, serum, and platelet expression of CD40 ligand in adults with cardiovascular disease. Am. J. Cardiol 2005; 96(10): 1365–1369. 10.1016/j.amjcard.2005.07.039
  • Manenti ERF, Bodanese LC, Camey SA, Polanczyk CA, Prognostic value of serum biomarkers in association with TIMI risk score for acute coronary syndromes. Clin Cardiol 2006; 29(9): 405–410. 10.1002/clc.4960290907
  • Varo N, De Lemos JA, Libby P, Morrow DA, Murphy SA, Nuzzo R, Gibson CM, Cannon CP, Braunwald E, Schonbeck U, et al. Soluble CD40L: risk prediction after acute coronary syndromes. Circulation 2003; 108(9): 1049–1052. 10.1161/01.CIR.0000088521.04017.13
  • Mälarstig A, Lindahl B, Wallentin L, Soluble SA, Soluble CD40L levels are regulated by the −3459 A>G polymorphism and predict myocardial infarction and the efficacy of antithrombotic treatment in Non-ST elevation acute coronary syndrome. Arterioscler. Thromb. Vasc. Biol 2006; 26(7): 1667–1673. 10.1161/01.ATV.0000222908.78873.36
  • Gergei I, Kälsch T, Scharnagl H, Kleber ME, Zirlik A, März W, Krämer BK, Kälsch A-I, Association of soluble CD40L with short-term and long-term cardiovascular and all-cause mortality: the Ludwigshafen Risk and Cardiovascular Health (LURIC) study. Atherosclerosis 2019; 291(August): 127–131. 10.1016/j.atherosclerosis.2019.09.004
  • Bosmans LA, Bosch L, Kusters PJH, Lutgens E, Seijkens TTP. The CD40-CD40L dyad as immunotherapeutic target in cardiovascular disease. J Cardiovasc Transl Res. 2020;14, 13–22. https://doi.org/10.1007/s12265-020-09994-3
  • Varo N, Nuzzo R, Natal C, Libby P, Schönbeck U, Influence of pre-analytical and analytical factors on soluble CD40L measurements. Clin Sci (Lond) 2006; 111(5): 341–347. 10.1042/CS20060047
  • Wang J, Tan GJ, Han LN, Bai YY, He M, Liu HBin, Novel biomarkers for cardiovascular risk prediction. J Geriatr Cardiol 2017; 14(2): 135–150. 10.11909/j.1671-5411.2017.02.008
  • Buccheri S, D’Arrigo P, Franchina G, Capodanno D, Risk stratification in patients with coronary artery disease: a practical walkthrough in the landscape of prognostic risk models. Interv Cardiol Rev 2018; 13(3): 112–120. 10.15420/icr.2018.16.2
  • Riondino S, Martini F, La Farina F, Spila A, Guadagni F, Ferroni P, Increased plasma levels of soluble CD40 ligand correlate with platelet activation markers and underline the need for standardized pre-analytical conditions. Clin. Biochem 2010; 43(7–8): 666–670. 10.1016/j.clinbiochem.2009.12.021
  • Gurbel PA, Becker RC, Mann KG, Steinhubl SR, Michelson AD, Platelet function monitoring in patients with coronary artery disease. J Am Coll Cardiol 2007; 50(19): 1822–1834. 10.1016/j.jacc.2007.07.051
  • Harrison P, Mackie I, Mumford A, Briggs C, Liesner R, Winter M, Machin S. Guidelines for the laboratory investigation of heritable disorders of platelet function. Br. J. Haematol 2011; 155(1): 30–44. 10.1111/j.1365-2141.2011.08793.x
  • Frelinger AL 3rd, Michelson AD, Wiviott SD, Trenk D, Neumann F-J, Miller DL, Jakubowski JA, Costigan TM, McCabe CH, Antman EM, et al. Intrinsic platelet reactivity before P2Y12 blockade contributes to residual platelet reactivity despite high-level P2Y12 blockade by prasugrel or high-dose clopidogrel. Results from PRINCIPLE-TIMI 44. Thromb. Haemost 2011; 106(8): 219–226. 10.1160/TH11-03-0185

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.