444
Views
2
CrossRef citations to date
0
Altmetric
Articles

New αIIbβ3 variants in 28 Turkish Glanzmann patients; structural hypothesis for complex activation by residues variations in I-EGF domains

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 551-561 | Received 24 Mar 2021, Accepted 08 Jun 2021, Published online: 19 Jul 2021

  • Caen JP. Glanzmann thrombasthenia. J Clin Invest 1972;1:388–391.
  • Nurden AT. Qualitative disorders of platelets and megakaryocytes. J Thromb Haemost 2005;3:1773–1782. 10.1111/j.1538-7836.2005.01428.x.
  • Botero JP, Lee K, Branchford BR, Bray PF, Freson K, Lambert MP, Luo M, Mohan S, Ross JE, Bergmeier W, et al. Glanzmann thrombasthenia: genetic basis and clinical correlates. Haematologica 2020;105:888–894. 10.3324/haematol.2018.214239.
  • Newman PJ, Seligsohn U, Lyman S, Coller BS. The molecular genetic basis of Glanzmann thrombasthenia in the iraqi-jewish and arab populations in Israel. Proc Natl Acad Sci USA 1991;88:3160–3164. 10.1073/pnas.88.8.3160.
  • Schlegel N, Gayet O, Morel-Kopp MC, Wyler B, Hurtaud-Roux MF, Kaplan C, Mc Gregor J, et al. The molecular genetic basis of Glanzmann’s thrombasthenia in a gypsy population in France: identification of a new mutation on the alpha IIb gene. Blood 1995;86(3):977–982. 10.1182/blood.V86.3.977.977.
  • Morel-Kopp MC, Kaplan C, Proulle V, Jallu V, Melchior C, Peyruchaud O, Aurousseau M-H, Kieffer N, et al. A three amino acid deletion in glycoprotein IIIa is responsible for type I Glanzmann’s thrombasthenia: importance of residues IIe325 Pro326 Gly327 for β3 integrin subunit association. Blood 1997;90:669–677. 10.1182/blood.V90.2.669.
  • Jallu V, Dusseaux M, Panzer S, Torchet M-F, Hezard N, Goudemand J, De Brevern AG, Kaplan C, et al. αIIbβ3 integrin: new allelic variants in Glanzmann thrombasthenia, effects on ITGA2Band ITGB3mRNA splicing, expression, and structure-function. Hum Mutat 2010;31:237–246. 10.1002/humu.21179.
  • Jallu V, Meunier M, Brement M, Kaplan C. A new platelet polymorphism Duv(a+), localized within the RGD binding domain of glycoprotein IIIa, is associated with neonatal thrombocytopenia. Blood 2002;99:4449–4456. 10.1182/blood.V99.12.4449.
  • Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, Gu B, Hart J, Hoffman D, Hoover J, et al. ClinVar: public archive of interpretations of clinically relevant variants. Nucleic Acids Res 2016;44(D1):D862–D868. 10.1093/nar/gkv1222.
  • Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 2015;17:405–424. 10.1038/gim.2015.30.
  • Ross JE, Zhang BM, Lee K, Mohan S, Branchford BR, Bray P, Dugan SN, Freson K, Heller PG, Kahr WHA, et al. Specifications of the variant curation guidelines for ITGA2B/ITGB3: clingen platelet disorder variant curation panel. Blood Adv 2021;5(2):414–431. 10.1182/bloodadvances.2020003712.
  • Desmet FO, Hamroun D, Lalande M, Collod-Béroud G, Claustres M, Béroud C, et al. Human splicing finder: an online bioinformatics tool to predict splicing signals. Nucleic Acids Res 2009;37:e67. 10.1093/nar/gkp215.
  • Adzhubei IA, Schmidt S, Peshkin L, Ramensky VE, Gerasimova A, Bork P, Kondrashov AS, Sunyaev SR, et al. A method and server for predicting damaging missense mutations. Nat Methods 2010;7:248–249. 10.1038/nmeth0410-248.
  • Madeira F, Park YM, Lee J, Buso N, Gur T, Madhusoodanan N, Basutkar P, Tivey ARN, Potter SC, Finn RD, et al. The EMBL-EBI search and sequence analysis tools APIs in 2019. Nucleic Acids Res 2019;47:W636–W641. 10.1093/nar/gkz268.
  • Jallu V, Poulain P, Fuchs PFJ, Plan C, Evern AG, Miyata T. Modeling and molecular dynamics of HPA-1a and −1b polymorphisms: effects on the structure of the β3 subunit of the αIIbβ3 integrin. PLoS One 2012;7:1–10. 10.1371/journal.pone.0047304.
  • Jallu V, Poulain P, Fuchs PF, Kaplan C, De Brevern AG. Modeling and molecular dynamics simulations of the V33 variant of the integrin subunit beta3: structural comparison with the L33 (HPA-1a) and P33 (HPA-1b) variants. Biochimie 2014;105:84–90. 10.1016/j.biochi.2014.06.017.
  • Zhu J, Luo B-H, Xiao T, Zhang C, Nishida N, Springer TA, et al. Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. Molecular Cell 2008;32(6):849–861. 10.1016/j.molcel.2008.11.018.
  • Hess B, Kutzner C, van der Spoel D, Lindahl E. GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. J Chem Theory Comput 2008;4:435–447. 10.1021/ct700301q.
  • Schmid N, Eichenberger AP, Choutko A, Riniker S, Winger M, Mark AE, van Gunsteren WF, et al. Definition and testing of the GROMOS force-field versions 54A7 and 54B7. European Biophysics Journal 2011;40(7):843–856. 10.1007/s00249-011-0700-9.
  • Joseph AP, Agarwal G, Mahajan S, Gelly J-C, Swapna LS, Offmann B, Cadet F, Bornot A, Tyagi M, Valadié H, et al. A short survey on protein blocks. Biophysical Reviews 2010;2(3):137–147. 10.1007/s12551-010-0036-1.
  • De Brevern AG, Etchebest C, Hazout S. Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks. Proteins 2000;41:271–287. 10.1002/1097-0134(20001115)41:3<271::AID-PROT10>3.0.CO;2-Z.
  • Blair TA, Michelson AD, Frelinger AL III. Mass cytometry reveals distinct platelet subtypes in healthy subjects and novel alterations in surface glycoproteins in Glanzmann thrombasthenia. Scientific Reports 2018;8(1):10300. 10.1038/s41598-018-28211-5.
  • Akhila MV, Narwani TJ, Floch A, Maljković M, Bisoo S, Shinada NK, Kranjc A, Gelly J-C, Srinivasan N, Mitić N, et al. A structural entropy index to analyse local conformations in intrinsically disordered proteins. J Struct Biol 2020;210:107464. 10.1016/j.jsb.2020.107464.
  • Nelson EJR, Li J, Mitchell WB, Chandy M, SRIVASTAVA A, COLLER BS, et al. Three novel beta-propeller mutations causing Glanzmann thrombasthenia result in production of normally stable pro-alpha, but variably impaired progression of pro-alphabeta from endoplasmic reticulum to Golgi. J Thromb Haemost 2005;3:2773–2783. 10.1111/j.1538-7836.2005.01593.x.
  • Nurden AT, Pillois X, Fiore M, Alessi M-C, Bonduel M, Dreyfus M, Goudemand J, Gruel Y, Benabdallah-Guerida S, Latger-Cannard V, et al. Expanding the mutation spectrum affecting αIIbβ3 integrin in glanzmann thrombasthenia: screening of the ITGA2B and ITGB3 genes in a large international Cohort. Hum Mutat 2015;36:548–561. 10.1002/humu.22776.
  • Wihadmadyatami H, Roder L, Berghofer H, Bein G, Heidinger K, Sachs UJ, Santoso S, et al. Immunisation against alphaIIbbeta3 and alphavbeta3 in a type 1 variant of Glanzmann’s thrombasthenia caused by a missense mutation Gly540Asp on beta3. Thromb Haemost 2016;116:262–271. 10.1160/TH15-12-0982.
  • Ambo H, Kamata T, Handa M, Taki M, Kuwajima M, Kawai Y, Oda A, Murata M, Takada Y, Watanabe K, et al. Three novel integrin β3 subunit missense mutations (H280P, C560F, and G579S) in thrombasthenia, including one (H280P) prevalent in Japanese patients. Biochem Biophys Res Commun 1998;251:763–768. 10.1006/bbrc.1998.9526.
  • Ruiz C, Liu CY, Sun QH, Sigaud-Fiks M, Fressinaud E, Muller J-Y, Nurden P, Nurden AT, Newman PJ, Valentin N, et al. A point mutation in the cysteine-rich domain of glycoprotein (GP) IIIa results in the expression of a GP IIb-IIIa (αIIbβ3) integrin receptor locked in a high-affinity state and a Glanzmann thrombasthenia-like phenotype. Blood 2001;98:2432–2441. 10.1182/blood.V98.8.2432.
  • Chen P, Melchior C, Brons NHC, Schlegel N, Caen J, Kieffer N, et al. Probing conformational changes in the I-like domain and the cysteine-rich repeat of human β3 integrins following disulfide bond disruption by cysteine mutations. Identification of cysteine 598 involved in αIIbβ3 activation. J Biol Chem 2001;276:38628–38635. 10.1074/jbc.M105737200.
  • Mor-Cohen R, Rosenberg N, Peretz H, Landau M, Coller B, Awidi A, Seligsohn U, et al. Disulfide bond disruption by a beta 3-Cys549Arg mutation in six Jordanian families with Glanzmann thrombasthenia causes diminished production of constitutively active alpha IIb beta 3. Thromb Haemost 2007;98:1257–1265. 10.1160/TH07-04-0248.
  • Kamata T, Ambo H, Puzon-mclaughlin W, TIEU KK, Handa M, Ikeda Y, Takada Y, et al. Critical cysteine residues for regulation of integrin αIIbβ3 are clustered in the epidermal growth factor domains of the β3 subunit. Biochem J 2004;378:1079–1082. 10.1042/bj20031701.
  • Kashiwagi H, Tomiyama Y, Tadokoro S, Honda S, Shiraga M, Mizutani H, Handa M, Kurata Y, Matsuzawa Y, Shattil SJ, et al. A mutation in the extracellular cysteine-rich repeat region of the β3 subunit activates integrins αIIbβ3 and αvβ3. Blood 1999;93:2559–2568. 10.1182/blood.V93.8.2559.
  • Takagi J, Petre BM, Walz T, Springer TA. Global conformational rearrangements in integrin extracellular domains in outside-in and inside-out signaling. Cell 2002;110: 599–11. 10.1016/S0092-8674(02)00935-2.
  • Goguet M, Narwani TJ, Petermann R, Jallu V, De Brevern AG. In silico analysis of Glanzmann variants of Calf-1 domain of αIIbβ3 integrin revealed dynamic allosteric effect. Scientific Reports 2017;7(1):8001. 10.1038/s41598-017-08408-w.
  • Fang J, Nurden P, North P, Nurden AT, Du LM, Valentin N, Wilcox DA, et al. C560Rβ3 caused platelet integrin αIIbβ3 to bind fibrinogen continuously, but resulted in a severe bleeding syndrome and increased murine mortality. J Thromb Haemost 2013;11:1163–1171. 10.1111/jth.12209.
  • Koc I. Prevalence and sociodemographic correlates of consanguineous marriages in Turkey. J Biosoc Sci 2008;40:137–148. 10.1017/S002193200700226X.
  • Karaman K, Yurekturk E, Geylan H, et al. Identification of three novel pathogenic ITGA2B and one novel pathogenic ITGB3 mutations in patients with hereditary Glanzmann’s thrombasthenia living in Eastern Turkey. Platelets 2021;32:238-242. 10.1080/09537104.2020.1732331.
  • Pillitteri D, Pilgrimm A-K, Kirchmaier CM. Novel mutations in the gpiib and gpiiia genes in Glanzmann thrombasthenia. Transfusion Medicine and Hemotherapy 2010;37(5):268–277. 10.1159/000320258.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.