1,592
Views
2
CrossRef citations to date
0
Altmetric
Review

Developing human tissue engineered arterial constructs to simulate human in vivo thrombus formation

, &
Article: 2153823 | Received 02 Oct 2022, Accepted 25 Nov 2022, Published online: 22 Dec 2022

References

  • Neubauer K, Zieger B. Endothelial cells and coagulation. Cell Tissue Res. 2022;387:391–7. doi: 10.1007/s00441-021-03471-2.
  • Watson SP. Platelet activation by extracellular matrix proteins in haemostasis and thrombosis. Curr Pharm Des. 2009;15:1358–1372. doi: 10.2174/138161209787846702.
  • Wang L, Miller C, Swarthout RF, Rao M, Mackman N, Taubman MB. Vascular smooth muscle–derived tissue factor is critical for arterial thrombosis after ferric chloride–induced injury. Blood. 2009;113(3):705–713. doi: 10.1182/blood-2007-05-090944.
  • Nesbitt WS, Westein E, Tovar-Lopez FJ. A shear gradient-dependent platelet aggregation mechanism drives thrombus formation. Nat Med. 2009;15:665–673. doi: 10.1038/nm.1955.
  • Westein E, van der Meer AD, Kuijpers MJ, Frimat JP, van den Berg A, Heemskerk JW. Atherosclerotic geometries exacerbate pathological thrombus formation poststenosis in a von Willebrand factor-dependent manner. Proc Natl Acad Sci USA. 2013;110:1357–1362. doi: 10.1073/pnas.1209905110.
  • Westrick RJ, Winn ME, Eitzman DT. Murine models of vascular thrombosis (Eitzman series). Arterioscler Thromb Vasc Biol. 2007;27:2079–2093. doi: 10.1161/ATVBAHA.107.142810.
  • Denis CV, Dubois C, Brass LF, Heemskerk JWM, Lenting PJ. Towards standardization of in vivo thrombosis studies in mice. J Thromb Haemost. 2011;9:1641–1644. doi: 10.1111/j.1538-7836.2011.04350.x.
  • Perlman RL. Mouse models of human disease: an evolutionary perspective. Evol Med Public Heal. 2016;2016:170–176. doi: 10.1093/emph/eow014.
  • Ware J. Dysfunctional platelet membrane receptors: from humans to mice. Thromb Haemost. 2004;92:478–485. doi: 10.1160/TH04-05-0308.
  • Siller-Matula JM, Plasenzotti R, Spiel A, Quehenberger P, Jilma B. Interspecies differences in coagulation profile. Thromb Haemost. 2008;100:397–404. doi: 10.1160/TH08-02-0103.
  • Cooley BC. Murine arterial thrombus induction mechanism influences subsequent thrombodynamics. Thromb Res Elsevier Ltd. 2015;135:939–943. doi: 10.1016/j.thromres.2015.02.016.
  • Hechler B, Nonne C, Eckly A, Magnenat S, Rinckel J-Y, Denis CV, Freund M, Cazenave J-P, Lanza F, Gachet C. Arterial thrombosis: relevance of a model with two levels of severity assessed by histologic, ultrastructural and functional characterization. J Thromb Haemost. 2010;8:173–184. doi: 10.1111/j.1538-7836.2009.03666.x.
  • Whinna HC. Overview of murine thrombosis models. Thromb Res. 2008;122(S1):S64–69. doi: 10.1016/S0049-3848(08)70022-7.
  • Sashindranath M, Sturgeon SA, French S, Craenmehr DDD, Selan C, Freddi S, Johnson C, Cody SH, Nesbitt WS, Hamilton JR, et al. The mode of anesthesia influences outcome in mouse models of arterial thrombosis. Res Pract Thromb Haemost. 2019;3:197–206. doi:10.1002/rth2.12184.
  • Day SM, Reeve JL, Myers DD, Fay WP. Murine thrombosis models. Thromb Haemost. 2004;92:486–494. doi: 10.1055/s-0037-1613739.
  • Fay W, Eitzman D, Shapiro A, Madison E, Ginsburg D. Platelets inhibit fibrinolysis in vitro by both plasminogen activator inhibitor-1-dependent and -independent mechanisms. Blood. 1999;83:351–356. doi: 10.1182/blood.V83.2.351.351.
  • Konstantinides S, Schäfer K, Thinnes T, Loskutoff DJ. Plasminogen activator inhibitor-1 and its cofactor vitronectin stabilize arterial thrombi after vascular injury in Mice. Circulation. 2001;103:576–583. doi: 10.1161/01.CIR.103.4.576.
  • Vyas MV, Gros R, Hackam DG. Translation of cardiovascular animal models to human randomized trials. Am J Cardiol. 2020;137:141. doi: 10.1016/j.amjcard.2020.10.027.
  • Rajeeva Pandian NK, Walther BK, Suresh R, Cooke JP, Jain A. Microengineered human vein-chip recreates venous valve architecture and its contribution to thrombosis. Small. 2020;16:e2003401. doi: 10.1002/smll.202003401.
  • Mangin PH, Gardiner EE, Nesbitt WS, Kerrigan SW, Korin N, Lam WA, Panteleev MA. Subcommittee on Biorheology. In vitro flow based systems to study platelet function and thrombus formation: recommendations for standardization: communication from the SSC on Biorheology of the ISTH. J Thromb Haemost. 2020;18:748–752. doi: 10.1111/jth.14717.
  • Pandian NKR, Mannino RG, Lam WA, Jain A. Thrombosis-on-a-chip: prospective impact of microphysiological models of vascular thrombosis. Curr Opin Biomed Eng. 2018;5:29–34. doi: 10.1016/j.cobme.2017.12.001.
  • Neeves KB, Onasoga AA, Hansen RR, Lilly JJ, Venckunaite D, Sumner MB, Irish AT, Brodsky G, Manco-Johnson MJ, Di Paola JA. Sources of variability in platelet accumulation on type 1 fibrillar collagen in microfluidic flow assays. PLoS One. 2013;8:e54680. doi: 10.1371/journal.pone.0054680.
  • Chen VM, Hogg PJ. Encryption and decryption of tissue factor. J Thromb Haemost. 2013;11 Suppl 1:277–284. doi: 10.1111/jth.12228.
  • Govindarajan V, Zhu S, Li R, Lu Y, Diamond SL, Reifman J, Mitrophanov AY. Impact of tissue factor localization on blood clot structure and resistance under Venous Shear. Biophys J. 2018;114:978–991. doi: 10.1016/j.bpj.2017.12.034.
  • Mannino RG, Qiu Y, Lam WA. Endothelial cell culture in microfluidic devices for investigating microvascular processes. Biomicrofluidics. 2018;12:042203. doi: 10.1063/1.5024901.
  • Coenen DM, Mastenbroek TG, Cosemans JMEM. Platelet interaction with activated endothelium: mechanistic insights from microfluidics. Blood. 2017;130:2819–2828. doi: 10.1182/blood-2017-04-780825.
  • Costa PF, Albers HJ, Linssen JEA, Middelkamp HHT, van der Hout L, Passier R, van den Berg A, Malda J, van der Meer AD. Mimicking arterial thrombosis in a 3D-printed microfluidic in vitro vascular model based on computed tomography angiography data. Lab Chip. 2017;17:2785–2792. doi: 10.1039/C7LC00202E.
  • Tsai M, Kita A, Leach J, Rounsevell R, Huang JN, Moake J, Ware RE, Fletcher DA, Lam WA. In vitro modeling of the microvascular occlusion and thrombosis that occur in hematologic diseases using microfluidic technology. J Clin Invest. 2012;122:408–418. doi: 10.1172/JCI58753.
  • Mannino RG, Myers DR, Ahn B, Wang Y, Rollins M, Gole H, Lin AS, Guldberg RE, Giddens DP, Timmins LH, et al. Do-it-yourself in vitro vasculature that recapitulates in vivo geometries for investigating endothelial-blood cell interactions. Sci Rep. 2015;5:12401. doi:10.1038/srep12401.
  • Dupuy A, Hagimola L, Mgaieth NSA, Houlahan CB, Preketes-Tardiani RE, Coleman PR, Passam FH. Thromboinflammation model-on-A-chip by whole blood microfluidics on fixed human Endothelium. Diagnostics (Basel). 2021;11:203. doi: 10.3390/diagnostics11020203.
  • Lundkvist A, Lilleodden E, Siekhaus W, Kinney J, Pruitt L, Balooch M. Viscoelastic properties of healthy human artery measured in saline solution by AFM-based indentation technique. MRS Online Proc Lib. 1996;436:353–358. doi: 10.1557/PROC-436-353.
  • Mahmoud M, Cancel L, Tarbell JM. Matrix stiffness affects Glycocalyx expression in cultured Endothelial cells. Front Cell Dev Biol. 2021;9:731666. doi: 10.3389/fcell.2021.731666.
  • Huynh J, Nishimura N, Rana K, Peloquin JM, Califano JP, Montague CR, King MR, Schaffer CB, Reinhart-King CA. Age-related intimal stiffening enhances endothelial permeability and leukocyte transmigration. Sci Transl Med. 2011;3:112ra122. doi: 10.1126/scitranslmed.3002761.
  • Qiu Y, Brown AC, Myers DR, Sakurai Y, Mannino RG, Tran R, Ahn B, Hardy ET, Kee MF, Kumar S, et al. Platelet mechanosensing of substrate stiffness during clot formation mediates adhesion, spreading, and activation. Proc Natl Acad Sci USA. 2014;111:14430–14435. doi: 10.1073/pnas.1322917111.
  • Kee MF, Myers DR, Sakurai Y, Lam WA, Qiu Y. Platelet mechanosensing of collagen matrices. PLoS One. 2015;10:e0126624. doi: 10.1371/journal.pone.0126624.
  • Berry J, Peaudecerf FJ, Masters NA, Neeves KB, Goldstein RE, Harper MT. An “occlusive thrombosis-on-a-chip” microfluidic device for investigating the effect of anti-thrombotic drugs. Lab Chip. 2021;21:4104–4117. doi: 10.1039/D1LC00347J.
  • Devillard CD, Marquette CA. Vascular tissue engineering: challenges and requirements for an ideal large scale blood vessel. Front Bioeng Biotechnol. 2021;9:721843. doi: 10.3389/fbioe.2021.721843.
  • Zheng Y, Chen J, Craven M, Choi NW, Totorica S, Diaz-Santana A, Kermani P, Hempstead B, Fischbach-Teschl C, López JA, et al. In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci USA. 2012;109:9342–9347. doi: 10.1073/pnas.1201240109.
  • Poventud-Fuentes I, Kwon KW, Seo J, Tomaiuolo M, Stalker TJ, Brass LF, Huh D. A human vascular injury-on-a-chip model of Hemostasis. Small. 2021;17:e2004889. doi: 10.1002/smll.202004889.
  • Menon NV, Tay HM, Wee SN, Li KHH, Hou HW. Micro-engineered perfusable 3D vasculatures for cardiovascular diseases. Lab Chip. 2017;17:2960–2968. doi: 10.1039/C7LC00607A.
  • Hasan A, Paul A, Memic A, Khademhosseini A. A multilayered microfluidic blood vessel-like structure. Biomed Microdevices. 2015;17:88. doi: 10.1007/s10544-015-9993-2.
  • Njoroge W, Hernández ACH, Musa FI, Butler R, Harper AGS, Yang Y. The combination of tissue-engineered blood vessel constructs and parallel flow chamber provides a potential alternative to in vivo drug testing models. Pharmaceutics. 2021;13:340. doi: 10.3390/pharmaceutics13030340.
  • Avendano A, Chang JJ, Cortes-Medina MG, Seibel AJ, Admasu BR, Boutelle CM, Bushman AR, Garg AA, DeShetler CM, Cole SL, et al. Integrated biophysical characterization of Fibrillar Collagen-based hydrogels. ACS Biomater Sci Eng. 2020;6:1408–1417. doi: 10.1021/acsbiomaterials.9b01873.
  • Sarrigiannidis SO, Rey JM, Dobre O, González-García C, Dalby MJ, Salmeron-Sanchez M. A tough act to follow: collagen hydrogel modifications to improve mechanical and growth factor loading capabilities. Mater Today Bio. 2021;10:100098. doi: 10.1016/j.mtbio.2021.100098.
  • Rickel AP, Deng X, Engebretson D, Hong Z. Electrospun nanofiber scaffold for vascular tissue engineering. Mater Sci Eng C Mater Biol Appl. 2021 Oct;129:112373. doi:10.1016/j.msec.2021.112373.
  • Musa FI, Harper AG, Yang Y. A real-time monitoring system to assess the platelet aggregatory capacity of components of a tissue-engineered blood vessel wall. Tissue Eng Part C Methods. 2016;22:691–699. doi: 10.1089/ten.tec.2015.0582.
  • Chen EP, Toksoy Z, Davis BA, Geibel JP. 3D Bioprinting of vascularized tissues for in vitro and in vivo applications. Front Bioeng Biotechnol. 2021;9:664188. doi: 10.3389/fbioe.2021.664188.
  • Cochrane A, Albers HJ, Passier R, Mummery CL, van den Berg A, Orlova VV, van der Meer AD. Advanced in vitro models of vascular biology: human induced pluripotent stem cells and organ-on-chip technology. Adv Drug Deliv Rev. 2019;140:68–77. doi: 10.1016/j.addr.2018.06.007.
  • Mallone A, Gericke C, Hosseini V, Chahbi K, Haenseler W, Emmert MY, von Eckardstein A, Walther JH, View Vogel V, Weber B, et al. Human induced pluripotent stem cell-derived vessels as dynamic atherosclerosis model on a chip. Biorxiv. doi:10.1101/2020.11.27.401034.
  • Cai Q, Liao W, Xue F, Wang X, Zhou W, Li Y, Zeng W. Selection of different endothelialization modes and different seed cells for tissue-engineered vascular graft. Bioact Mater. 2021;6:2557–2568. doi: 10.1016/j.bioactmat.2020.12.021.
  • Mathur T, Singh KA, Pandian NKR, Tsai SH, Hein TW, Gaharwar AK, Flanagan JM, Jain A. Organ-on-chips made of blood: endothelial progenitor cells from blood reconstitute vascular thromboinflammation in vessel-chips. Lab Chip. 2019 Jul 23;19:2500–2511. doi:10.1039/C9LC00469F.
  • Greiner AM, Sales A, Chen H, Biela SA, Kaufmann D, Kemkemer R. Nano-and microstructured materials for in vitro studies of the physiology of vascular cells. Beilstein J Nanotechnol. 2016;7:1620–1641. doi: 10.3762/bjnano.7.155.
  • Selden C, Fuller B. Role of bioreactor technology in tissue engineering for clinical use and therapeutic target design. Bioengineering. 2018;5:32. doi: 10.3390/bioengineering5020032.
  • Mertsching H, Hansmann J. Bioreactor technology in cardiovascular tissue engineering. In: Kasper C, van Griensven M, Pörtner R, editors. Bioreactor systems for tissue engineering. Advances in biochemical engineering/biotechnology. Vol. 112. Berlin, Heidelberg: Springer; 2019.
  • Beamish JA, He P, Kottke-Marchant K, Marchant RE. Molecular regulation of contractile smooth muscle cell phenotype: implications for vascular tissue engineering. Tissue Eng Part B Rev. 2010;16:467–491. doi: 10.1089/ten.teb.2009.0630.
  • Bachmann BJ, Bernardi L, Loosli C, Marschewski J, Perrini M, Ehrbar M, Ermanni P, Poulikakos D, Ferrari A, Mazza E. A novel bioreactor system for the assessment of Endothelialization on deformable surfaces. Sci Rep. 2016;6:38861. doi: 10.1038/srep38861.
  • Davies JE, Lopresto D, Apta BHR, Lin Z, Ma W, Harper MT. Using Yoda-1 to mimic laminar flow in vitro: a tool to simplify drug testing. Biochem Pharmacol. 2019;168:473–480. doi: 10.1016/j.bcp.2019.08.013.
  • Pound P, Ram R. Are researchers moving away from animal models as a result of poor clinical translation in the field of stroke? An analysis of opinion papers. BMJ Open Sci. 2020;4:e100041. doi: 10.1136/bmjos-2019-100041.
  • Stalker TJ, Traxler EA, Wu J, Wannemacher KM, Cermignano SL, Voronov R, Diamond SL, Brass LF. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood. 2013;121:1875–1885. doi: 10.1182/blood-2012-09-457739.
  • Chen J, Zhang X, Millican R, Lynd T, Gangasani M, Malhotra S, Sherwood J, Hwang PT, Cho Y, Brott BC, et al. Recent progress in in vitro models for Atherosclerosis studies. Front Cardiovasc Med. 2022;8:790529. doi: 10.3389/fcvm.2021.790529.