2,616
Views
2
CrossRef citations to date
0
Altmetric
Review

Roles of non-coding RNA in megakaryocytopoiesis and thrombopoiesis: new target therapies in ITP

, &
Article: 2157382 | Received 25 Jul 2022, Accepted 06 Dec 2022, Published online: 22 Dec 2022

References

  • Wu J, Nagy LE, Liangpunsakul S, Wang L. Non-coding RNA crosstalk with nuclear receptors in liver disease. Biochim Biophys Acta Mol Basis Dis. 2021;1867(5):166083. doi:10.1016/j.bbadis.2021.166083. Epub 2021/01/27.
  • Zhong X, Zhang D, Xiong M, Zhang L. Noncoding RNA for cancer gene therapy. Recent Results Cancer Res. 2016;209:51–10. Epub 2017/01/20.
  • Farber BA, Lalazar G, Simon EP, Hammond WJ, Requena D, Bhanot UK, La Quaglia MP, Simon SM. Non coding RNA analysis in fibrolamellar hepatocellular carcinoma. Oncotarget. 2018;9(12):10211–10227. doi:10.18632/oncotarget.23325. Epub 2018/03/15.
  • Webb A, Papp AC, Curtis A, Newman LC, Pietrzak M, Seweryn M, Handelman SK, Rempala GA, Wang D, Graziosa E, et al. RNA sequencing of transcriptomes in human brain regions: protein-coding and non-coding RNAs, isoforms and alleles. BMC Genomics. 2015;16(1):990. doi:10.1186/s12864-015-2207-8. Epub 2015/11/26.
  • Rossi JJ. A novel nuclear miRNA mediated modulation of a non-coding antisense RNA and its cognate sense coding mRNA. EMBO J. 2011;30(21):4340–4341. doi:10.1038/emboj.2011.373. Epub 2011/11/04.
  • Ruwe H, Schmitz-Linneweber C. Short non-coding RNA fragments accumulating in chloroplasts: footprints of RNA binding proteins? Nucleic Acids Res. 2012;40(7):3106–3116. doi:10.1093/nar/gkr1138. Epub 2011/12/06.
  • Ozturk HM, Ozturk S, Yetkin E. Linkage between cardiovascular diseases and major depression: contribution of platelet cells. Psychiatry Res. 2020;287:111026. doi:10.1016/j.psychres.2017.11.079. Epub 2018/01/11.
  • Olas B. Biochemistry of blood platelet activation and the beneficial role of plant oils in cardiovascular diseases. Adv Clin Chem. 2020;95:219–243. Epub 2020/03/04.
  • Kaushansky K. The molecular mechanisms that control thrombopoiesis. J Clin Invest. 2005;115(12):3339–3347. doi:10.1172/JCI26674. Epub 2005/12/03.
  • Giannini S, Lee-Sundlov MM, Rivadeneyra L, Di Buduo CA, Burns R, Lau JT, Falet H, Balduini A, Hoffmeister KM. β4GALT1 controls β1 integrin function to govern thrombopoiesis and hematopoietic stem cell homeostasis. Nat Commun. 2020;11(1):356. doi:10.1038/s41467-019-14178-y. Epub 2020/01/19.
  • Asquith NL, Machlus KR. Teamwork makes the dream work in thrombopoiesis. Blood. 2019;134(10):791–792. doi:10.1182/blood.2019002306. Epub 2019/09/07.
  • Kaushansky K. Thrombopoiesis. Semin Hematol. 2015;52(1):4–11. doi:10.1053/j.seminhematol.2014.10.003. Epub 2015/01/13.
  • Wang H, Liu C, Liu X, Wang M, Wu D, Gao J, Su P, Nakahata T, Zhou W, Xu Y, et al. MEIS1 regulates hemogenic endothelial generation, megakaryopoiesis, and thrombopoiesis in human pluripotent stem cells by targeting TAL1 and FLI1. Stem Cell Reports. 2018;10(2):447–460. doi:10.1016/j.stemcr.2017.12.017. Epub 2018/01/24.
  • Metcalf DB. Thrombopoietin — at last. Nature. 1994;369(6481):519–520. doi:10.1038/369519a0. Epub 1994/06/16.
  • Kaushansky K, Lok S, Holly RD, Broudy VC, Lin N, Bailey MC, Forstrom JW, Buddle MM, Oort PJ, Hagen FS, et al. Promotion of megakaryocyte progenitor expansion and differentiation by the c-Mpl ligand thrombopoietin. Nature. 1994;369(6481):568–571. doi:10.1038/369568a0. Epub 1994/06/16.
  • Chen S, Qi Y, Wang S, Xu Y, Shen M, Hu M, Du C, Chen F, Chen M, Lu Y, et al. Melatonin enhances thrombopoiesis through ERK1/2 and Akt activation orchestrated by dual adaptor for phosphotyrosine and 3-phosphoinositides. J Pineal Res. 2020;68(3):e12637. doi:10.1111/jpi.12637. Epub 2020/02/14.
  • Yan S, Liu X, Ke X, Xian Z, Peng C, Wang X, Chen M. Screening on platelet LncRNA expression profile discloses novel residual platelet reactivity biomarker. Int J Lab Hematol. 2020;42(5):661–668. doi:10.1111/ijlh.13261. Epub 2020/06/23.
  • Tran JQD, Pedersen OH, Larsen ML, Grove EL, Kristensen SD, Hvas AM, Nissen PH. Platelet microRNA expression and association with platelet maturity and function in patients with essential thrombocythemia. Platelets. 2020;31(3):365–372. doi:10.1080/09537104.2019.1636019. Epub 2019/06/27.
  • Mukai N, Nakayama Y, Ishi S, Ogawa S, Maeda S, Anada N, Murakami S, Mizobe T, Sawa T, Nakajima Y. Changes in MicroRNA expression level of circulating platelets contribute to platelet defect after cardiopulmonary bypass. Crit Care Med. 2018;46(8):e761–767. doi:10.1097/CCM.0000000000003197. Epub 2018/05/10.
  • Zhou M, Gao M, Luo Y, Gui R, Ji H. Long non-coding RNA metallothionein 1 pseudogene 3 promotes p2y12 expression by sponging miR-126 to activate platelet in diabetic animal model. Platelets. 2019;30(4):452–459. doi:10.1080/09537104.2018.1457781.
  • Fiedler J, Jazbutyte V, Kirchmaier BC, Gupta SK, Lorenzen J, Hartmann D, Galuppo P, Kneitz S, Pena JT, Sohn-Lee C, et al. MicroRNA-24 regulates vascularity after myocardial infarction. Circulation. 2011;124(6):720–730. doi:10.1161/CIRCULATIONAHA.111.039008. Epub 2011/07/27.
  • Citrin KM, Fernandez-Hernando C, Suarez Y. MicroRNA regulation of cholesterol metabolism. Ann N Y Acad Sci. 2021;1495(1):55–77. doi:10.1111/nyas.14566. Epub 2021/02/02.
  • Chen FY, Bi L, Qian L, Gao J, Jiang YC, Chen WP. Identification of multidrug resistance gene MDR1 associated microRNA of salvianolic acid a reversal in lung cancer. Zhongguo Zhong Yao Za Zhi. 2016;41(17):3279–3284. doi:10.4268/cjcmm20161726. Epub 2017/09/19.
  • Yang J, Ma D, Fesler A, Zhai H, Leamniramit A, Li W, Wu S, Ju J. Expression analysis of microRNA as prognostic biomarkers in colorectal cancer. Oncotarget. 2017;8(32):52403–52412. doi:10.18632/oncotarget.14175. Epub 2017/09/09.
  • Dangwal S, Thum T. MicroRnas in platelet biogenesis and function. Thromb Haemost. 2012;108(10):599–604. doi:10.1160/TH12-03-0211. Epub 2012/07/12.
  • Gatsiou A, Boeckel JN, Randriamboavonjy V, Stellos K. MicroRnas in platelet biogenesis and function: implications in vascular homeostasis and inflammation. Curr Vasc Pharmacol. 2012;10(5):524–531. doi:10.2174/157016112801784611. Epub 2012/02/18.
  • Faria AVS, Andrade SS, Peppelenbosch MP, Ferreira-Halder CV, Fuhler GM. The role of phospho-tyrosine signaling in platelet biology and hemostasis. Biochim Biophys Acta Mol Cell Res. 2021;1868(3):118927. doi:10.1016/j.bbamcr.2020.118927. Epub 2020/12/15.
  • Boilard E, Nigrovic PA, Larabee K, Watts GF, Coblyn JS, Weinblatt ME, Massarotti EM, Remold-O’Donnell E, Farndale RW, Ware J, et al. Platelets amplify inflammation in arthritis via collagen-dependent microparticle production. Science. 2010;327(5965):580–583. doi:10.1126/science.1181928. Epub 2010/01/30.
  • Jain S, Harris J, Ware J. Platelets: linking hemostasis and cancer. Arterioscler Thromb Vasc Biol. 2010;30(12):2362–2367. doi:10.1161/ATVBAHA.110.207514. Epub 2010/11/13.
  • Kottke-Marchant K. Importance of platelets and platelet response in acute coronary syndromes. Cleve Clin J Med. 2009;76(Suppl 1):S2–7. doi:10.3949/ccjm.76.s1.01. Epub 2009/04/03.
  • Nurden AT. Platelets, inflammation and tissue regeneration. Thromb Haemost. 2011;105(Suppl 1):S13–33. doi:10.1160/THS10-11-0720. Epub 2011/04/12.
  • Parra-Izquierdo I, McCarty OJT, Aslan JE. Platelet miR-223 delivery rescues vascular cells in Kawasaki disease. Circ Res. 2020;127(7):874–876. doi:10.1161/CIRCRESAHA.120.317796. Epub 2020/09/11.
  • Su M, Fan S, Ling Z, Fan X, Xia L, Liu Y, Li S, Zhang Y, Zeng Z, Tang WH. Restoring the platelet miR-223 by Calpain inhibition alleviates the neointimal hyperplasia in diabetes. Front Physiol. 2020;11:742. doi:10.3389/fphys.2020.00742. Epub 2020/08/01.
  • Sun Y, Liu XL, Zhang D, Liu F, Cheng YJ, Ma Y, Zhou YJ, Zhao YX. Platelet-derived exosomes affect the proliferation and migration of human umbilical vein endothelial cells via miR-126. Curr Vasc Pharmacol. 2019;17(4):379–387. doi:10.2174/1570161116666180313142139. Epub 2018/03/14.
  • Kondkar AA, Bray MS, Leal SM, Nagalla S, Liu DJ, Jin Y, Dong JF, Ren Q, Whiteheart SW, Shaw C, et al. VAMP8/Endobrevin is overexpressed in hyperreactive human platelets: suggested role for platelet microRNA. J Thromb Haemost. 2010;8(2):369–378. doi:10.1111/j.1538-7836.2009.03700.x.
  • Pichler M, Calin GA. MicroRnas in cancer: from developmental genes in worms to their clinical application in patients. Br J Cancer. 2015;113(4):569–573. doi:10.1038/bjc.2015.253. Epub 2015/07/15.
  • Garzon R, Pichiorri F, Palumbo T, Iuliano R, Cimmino A, Aqeilan R, Volinia S, Bhatt D, Alder H, Marcucci G, et al. MicroRNA fingerprints during human megakaryocytopoiesis. Proc Natl Acad Sci USA. 2006;103(13):5078–5083. doi:10.1073/pnas.0600587103.
  • Emmrich S, Henke K, Hegermann J, Ochs M, Reinhardt D, Klusmann JH. miRnas can increase the efficiency of ex vivo platelet generation. Ann Hematol. 2012;91(11):1673–1684. doi:10.1007/s00277-012-1517-z. Epub 2012/07/06.
  • Shi R, Zhou X, Ji WJ, Zhang YY, Ma YQ, Zhang JQ, Li YM. The emerging role of miR-223 in platelet reactivity: implications in antiplatelet therapy. Biomed Res Int. 2015;2015:981841. doi:10.1155/2015/981841. Epub 2015/07/30.
  • Opalinska JB, Bersenev A, Zhang Z, Schmaier AA, Choi J, Yao Y, D’Souza J, Tong W, Weiss MJ. MicroRNA expression in maturing murine megakaryocytes. Blood. 2010;116(23):e128–138. doi:10.1182/blood-2010-06-292920. Epub 2010/08/20.
  • Labbaye C, Spinello I, Quaranta MT, Pelosi E, Pasquini L, Petrucci E, Biffoni M, Nuzzolo ER, Billi M, Foa R, et al. A three-step pathway comprising PLZF/miR-146a/cxcr4 controls megakaryopoiesis. Nat Cell Biol. 2008;10(7):788–801. doi:10.1038/ncb1741. Epub 2008/06/24.
  • Kandi R, Undi R, Gutti RK. MiR-125b regulates cell proliferation and survival in neonatal megakaryocytes. Ann Hematol. 2014;93(6):1065–1066. doi:10.1007/s00277-013-1928-5. Epub 2013/10/26.
  • Qu M, Fang F, Zou X, Zeng Q, Fan Z, Chen L, Yue W, Xie X, Pei X. miR-125b modulates megakaryocyte maturation by targeting the cell-cycle inhibitor p19(ink4d). Cell Death Dis. 2016;7(10):e2430. doi:10.1038/cddis.2016.288. Epub 2016/10/21.
  • Weiss CN, Ito K. microRNA-22 promotes megakaryocyte differentiation through repression of its target, GFI1. Blood Adv. 2019;3(1):33–46. doi:10.1182/bloodadvances.2018023804. Epub 2019/01/09.
  • Ichimura A, Ruike Y, Terasawa K, Shimizu K, Tsujimoto G. MicroRNA-34a inhibits cell proliferation by repressing mitogen-activated protein kinase kinase 1 during megakaryocytic differentiation of K562 cells. Mol Pharmacol. 2010;77(6):1016–1024. doi:10.1124/mol.109.063321. Epub 2010/03/20.
  • Navarro F, Gutman D, Meire E, Caceres M, Rigoutsos I, Bentwich Z, Lieberman J. miR-34a contributes to megakaryocytic differentiation of K562 cells independently of p53. Blood. 2009;114(10):2181–2192. doi:10.1182/blood-2009-02-205062. Epub 2009/07/09.
  • Emambokus N, Vegiopoulos A, Harman B, Jenkinson E, Anderson G, Frampton J. Progression through key stages of haemopoiesis is dependent on distinct threshold levels of c-Myb. EMBO J. 2003;22:4478–4488. doi:10.1093/emboj/cdg434. Epub 2003/08/28.
  • Lu J, Guo S, Ebert BL, Zhang H, Peng X, Bosco J, Pretz J, Schlanger R, Wang JY, Mak RH, et al. MicroRNA-mediated control of cell fate in megakaryocyte-erythrocyte progenitors. Dev Cell. 2008;14(6):843–853. doi:10.1016/j.devcel.2008.03.012. Epub 2008/06/10.
  • Georgantas RW, 3rd, Hildreth R, Morisot S, Alder J, Liu CG, Heimfeld S, Calin GA, Croce CM, Civin CI. CD34+ hematopoietic stem-progenitor cell microRNA expression and function: a circuit diagram of differentiation control. Proc Natl Acad Sci USA. 2007;104(8):2750–2755. doi:10.1073/pnas.0610983104. Epub 2007/02/13.
  • Bhatlekar S, Manne BK, Basak I, Edelstein LC, Tugolukova E, Stoller ML, Cody MJ, Morley SC, Nagalla S, Weyrich AS, et al. miR-125a-5p regulates megakaryocyte proplatelet formation via the actin-bundling protein L-plastin. Blood. 2020;136(15):1760–1772. doi:10.1182/blood.2020005230. Epub 2020/08/28.
  • Fanucchi S, Fok ET, Dalla E, Shibayama Y, Borner K, Chang EY, Stoychev S, Imakaev M, Grimm D, Wang KC, et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet. 2019;51(1):138–150. doi:10.1038/s41588-018-0298-2. Epub 2018/12/12.
  • Ariel F, Lucero L, Christ A, Mammarella MF, Jegu T, Veluchamy A, Mariappan K, Latrasse D, Blein T, Liu C, et al. R-loop mediated trans action of the APOLO long noncoding RNA. Mol Cell. 2020;77(5):1055–1065 e1054. doi:10.1016/j.molcel.2019.12.015. Epub 2020/01/19.
  • Rom A, Melamed L, Gil N, Goldrich MJ, Kadir R, Golan M, Biton I, Perry RBT, Ulitsky I. Regulation of CHD2 expression by the Chaserr long noncoding RNA gene is essential for viability. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-13075-8.
  • Grossi E, Raimondi I, Goni E, Gonzalez J, Marchese FP, Chapaprieta V, Martin-Subero JI, Guo S, Huarte M. A lncRNA-SWI/SNF complex crosstalk controls transcriptional activation at specific promoter regions. Nat Commun. 2020;11(1):936. doi:10.1038/s41467-020-14623-3. Epub 2020/02/20.
  • Jain AK, Xi YX, McCarthy R, Allton K, Akdemir KC, Patel LR, Aronow B, Lin CR, Li W, Yang LQ, et al. LncPRESS1 is a p53-regulated LncRNA that safeguards pluripotency by disrupting SIRT6-mediated De-acetylation of Histone H3K56. Mol Cell. 2016;64(5):967–981. doi:10.1016/j.molcel.2016.10.039.
  • Dimitrova N, Zamudio JR, Jong RM, Soukup D, Resnick R, Sarma K, Ward AJ, Raj A, Lee JT, Sharp PA, et al. LincRNA-p21 activates p21 in cis to promote Polycomb target gene expression and to enforce the G1/S checkpoint. Mol Cell. 2014;54(5):777–790. doi:10.1016/j.molcel.2014.04.025. Epub 2014/05/27.
  • Yari H, Jin L, Teng L, Wang YF, Wu YY, Liu GZ, Gao W, Liang J, Xi YF, Feng YC, et al. LncRNA REG1CP promotes tumorigenesis through an enhancer complex to recruit FANCJ helicase for REG3A transcription. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-13313-z.
  • Cai H, Yao J, An Y, Chen X, Chen W, Wu D, Luo B, Yang Y, Jiang Y, Sun D, et al. LncRNA HOTAIR acts a competing endogenous RNA to control the expression of notch3 via sponging miR-613 in pancreatic cancer. Oncotarget. 2017;8(20):32905–32917. doi:10.18632/oncotarget.16462. Epub 2017/04/19.
  • Wang BJ, Ding HW, Ma GA. Long noncoding RNA PVT1 promotes melanoma progression via endogenous sponging miR-26b. Oncol Res. 2018;26(5):675–681. doi:10.3727/096504017X14920318811730. Epub 2017/04/15.
  • Guo CJ, Ma XK, Xing YH, Zheng CC, Xu YF, Shan L, Zhang J, Wang S, Wang Y, Carmichael GG, et al. Distinct processing of lncRNAs contributes to non-conserved functions in stem cells. Cell. 2020;181(3):621–636 e622. doi:10.1016/j.cell.2020.03.006. Epub 2020/04/08.
  • Miao H, Wang LL, Zhan HM, Dai JS, Chang YB, Wu F, Liu T, Liu ZY, Gao CF, Li L, et al. A long noncoding RNA distributed in both nucleus and cytoplasm operates in the PYCARD-regulated apoptosis by coordinating the epigenetic and translational regulation. PLoS Genet. 2019;15(5):e1008144. doi:10.1371/journal.pgen.1008144.
  • Lee S, Kopp F, Chang TC, Sataluri A, Chen B, Sivakumar S, Yu H, Xie Y, Mendell JT. Noncoding RNA NORAD regulates genomic stability by sequestering PUMILIO proteins. Cell. 2016;164(1–2):69–80. doi:10.1016/j.cell.2015.12.017.
  • Schmitt AM, Garcia JT, Hung T, Flynn RA, Shen Y, Qu K, Payumo AY, Peres-da-Silva A, Broz DK, Baum R, et al. An inducible long noncoding RNA amplifies DNA damage signaling. Nat Genet. 2016;48(11):1370–1376. doi:10.1038/ng.3673. Epub 2016/10/28.
  • Marchese FP, Grossi E, Marin-Bejar O, Bharti SK, Raimondi I, Gonzalez J, Martinez-Herrera DJ, Athie A, Amadoz A, Brosh RM, Jr., et al. A long noncoding RNA regulates sister chromatid cohesion. Mol Cell. 2016;63(3):397–407. doi:10.1016/j.molcel.2016.06.031. Epub 2016/08/02.
  • Lewandowski JP, Lee JC, Hwang T, Sunwoo H, Goldstein JM, Groff AF, Chang NP, Mallard W, Williams A, Henao-Meija J, et al. The Firre locus produces a trans-acting RNA molecule that functions in hematopoiesis. Nat Commun. 2019;10(1). doi:10.1038/s41467-019-12970-4.
  • Yin QF, Yang L, Zhang Y, Xiang JF, Wu YW, Carmichael GG, Chen LL. Long noncoding RNAs with snoRNA ends. Mol Cell. 2012;48(2):219–230. doi:10.1016/j.molcel.2012.07.033. Epub 2012/09/11.
  • Guttman M, Rinn JL. Modular regulatory principles of large non-coding RNAs. Nature. 2012;482(7385):339–346. doi:10.1038/nature10887. Epub 2012/02/18.
  • Guo X, Gao L, Wang Y, Chiu DK, Wang T, Deng Y. Advances in long noncoding RNAs: identification, structure prediction and function annotation. Brief Funct Genomics. 2016;15(1):38–46. doi:10.1093/bfgp/elv022. Epub 2015/06/15.
  • Paralkar VR, Weiss MJ. Long noncoding RNAs in biology and hematopoiesis. Blood. 2013;121(24):4842–4846. doi:10.1182/blood-2013-03-456111. Epub 2013/05/07.
  • Satpathy AT, Chang HY. Long noncoding RNA in hematopoiesis and immunity. Immunity. 2015;42(5):792–804. doi:10.1016/j.immuni.2015.05.004. Epub 2015/05/21.
  • Chen D, Zhang M, Ruan J, Li X, Wang S, Cheng X, Zhao H, Zeng Y, Liu J, He K, et al. The long non-coding RNA HOXA11-AS promotes epithelial mesenchymal transition by sponging miR-149-3p in colorectal cancer. J Cancer. 2020;11(20):6050–6058. doi:10.7150/jca.49809. Epub 2020/09/15.
  • Liang H, Pan Z, Zhao X, Liu L, Sun J, Su X, Xu C, Zhou Y, Zhao D, Xu B, et al. LncRNA PFL contributes to cardiac fibrosis by acting as a competing endogenous RNA of let-7d. Theranostics. 2018;8(4):1180–1194. doi:10.7150/thno.20846. Epub 2018/02/22.
  • Li S, Zhu K, Liu L, Gu J, Niu H, Guo J. lncARSR sponges miR-34a-5p to promote colorectal cancer invasion and metastasis via hexokinase-1-mediated glycolysis. Cancer Sci. 2020;111(10):3938–3952. doi:10.1111/cas.14617. Epub 2020/08/17.
  • Paraskevopoulou MD, Hatzigeorgiou AG. Analyzing MiRNA-LncRNA Interactions. Methods Mol Biol. 2016;1402:271–286. Epub 2016/01/02.
  • Al-Tobasei R, Paneru B, Salem M. Genome-wide discovery of long non-coding RNAs in rainbow trout. PLoS One. 2016;11(2):e0148940. doi:10.1371/journal.pone.0148940. Epub 2016/02/20.
  • Hu S, Wu J, Chen L, Shan G. Signals from noncoding RNAs: unconventional roles for conventional pol III transcripts. Int J Biochem Cell Biol. 2012;44(11):1847–1851. doi:10.1016/j.biocel.2012.07.013. Epub 2012/07/24.
  • Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30(8):348–355. doi:10.1016/j.tig.2014.06.001. Epub 2014/06/30.
  • Melissari MT, Grote P. Roles for long non-coding RNAs in physiology and disease. Pflugers Arch. 2016;468(6):945–958. doi:10.1007/s00424-016-1804-y. Epub 2016/03/06.
  • Giroud M, Scheideler M. Long non-coding RNAs in metabolic organs and energy homeostasis. Int J Mol Sci. 2017;18(12):2578. doi:10.3390/ijms18122578. Epub 2017/12/01.
  • Kumari P, Sampath K. cncRnas: Bi-functional RNAs with protein coding and non-coding functions. Semin Cell Dev Biol. 2015;47-48:40–51. doi:10.1016/j.semcdb.2015.10.024. Epub 2015/10/27.
  • Spurlock CF, 3rd, Crooke PS, 3rd, Aune TM. Biogenesis and transcriptional regulation of long noncoding RNAs in the human immune system. J Immunol. 2016;197(12):4509–4517. doi:10.4049/jimmunol.1600970. Epub 2016/12/04.
  • Marchese FP, Raimondi I, Huarte M. The multidimensional mechanisms of long noncoding RNA function. Genome Biol. 2017;18(1):206. doi:10.1186/s13059-017-1348-2.
  • Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. Gene regulation by the act of long non-coding RNA transcription. BMC Biol. 2013;11:59. Epub 2013/06/01.
  • Zampetaki A, Albrecht A, Steinhofel K. Long non-coding RNA structure and function: is there a link? Front Physiol. 2018;9:1201. Epub 2018/09/11.
  • Luo M, Jeong M, Sun D, Park HJ, Rodriguez BA, Xia Z, Yang L, Zhang X, Sheng K, Darlington GJ, et al. Long non-coding RNAs control hematopoietic stem cell function. Cell Stem Cell. 2015;16:426–438. Epub 2015/03/17.
  • Wang C, Wu X, Shen F, Li Y, Zhang Y, Yu D. Shlnc-EC6 regulates murine erythroid enucleation by Rac1-PIP5K pathway. Dev Growth Differ. 2015;57(6):466–473. doi:10.1111/dgd.12225.
  • Wei S, Zhao M, Wang X, Li Y, Wang K. PU.1 controls the expression of long noncoding RNA HOTAIRM1 during granulocytic differentiation. J Hematol Oncol. 2016;9(1):44. doi:10.1186/s13045-016-0274-1.
  • Zhang X, Weissman SM, Newburger PE. Long intergenic non-coding RNA HOTAIRM1 regulates cell cycle progression during myeloid maturation in NB4 human promyelocytic leukemia cells. RNA Biol. 2014;11(6):777–787. doi:10.4161/rna.28828.
  • Wagner LA, Christensen CJ, Dunn DM, Spangrude GJ, Georgelas A, Kelley L, Esplin MS, Weiss RB, Gleich GJ. EGO, a novel, noncoding RNA gene, regulates eosinophil granule protein transcript expression. Blood. 2007;109(12):5191–5198. doi:10.1182/blood-2006-06-027987. Epub 2007/03/14.
  • Schwarzer A, Emmrich S, Schmidt F, Beck D, Ng M, Reimer C, Adams FF, Grasedieck S, Witte D, Kabler S, et al. The non-coding RNA landscape of human hematopoiesis and leukemia. Nat Commun. 2017;8(1):218. doi:10.1038/s41467-017-00212-4. Epub 2017/08/11.
  • de Freitas RM, da Costa Maranduba CM. Myeloproliferative neoplasms and the JAK/STAT signaling pathway: an overview. Rev Bras Hematol Hemoter. 2015;37(5):348–353. doi:10.1016/j.bjhh.2014.10.001. Epub 2015/09/27.
  • Kutter C, Watt S, Stefflova K, Wilson MD, Goncalves A, Ponting CP, Odom DT, Marques AC. Rapid turnover of long noncoding RNAs and the evolution of gene expression. PLoS Genet. 2012;8(7):e1002841. doi:10.1371/journal.pgen.1002841. Epub 2012/07/31.
  • Raghuwanshi S, Dahariya S, Musvi SS, Gutti U, Kandi R, Undi RB, Sahu I, Gautam DK, Paddibhatla I, Gutti RK. MicroRNA function in megakaryocytes. Platelets. 2019;30(7):809–816. doi:10.1080/09537104.2018.1528343. Epub 2018/10/26.
  • Kazemzadeh M, Safaralizadeh R, Orang AV. LncRNAs: emerging players in gene regulation and disease pathogenesis. J Genet. 2015;94(4):771–784. doi:10.1007/s12041-015-0561-6. Epub 2015/12/23.
  • Ma X, Renda MJ, Wang L, Cheng EC, Niu C, Morris SW, Chi AS, Krause DS. Rbm15 modulates Notch-induced transcriptional activation and affects myeloid differentiation. Mol Cell Biol. 2007;27(8):3056–3064. doi:10.1128/MCB.01339-06. Epub 2007/02/07.
  • Garzon R, Volinia S, Papaioannou D, Nicolet D, Kohlschmidt J, Yan PS, Mrozek K, Bucci D, Carroll AJ, Baer MR, et al. Expression and prognostic impact of lncRNAs in acute myeloid leukemia. Proc Natl Acad Sci USA. 2014;111(52):18679–18684. doi:10.1073/pnas.1422050112.
  • Bian W, Chen W, Jiang X, Qu H, Jiang J, Yang J, Liang X, Zhao B, Sun Y, Zhang C. Downregulation of long non-coding RNA nuclear Paraspeckle assembly transcript 1 inhibits MEG-01 differentiation and platelet-like particles activity. Front Genet. 2020;11:571467. doi:10.3389/fgene.2020.571467. Epub 2020/11/17.
  • Tran NT, Su H, Khodadadi-Jamayran A, Lin S, Zhang L, Zhou D, Pawlik KM, Townes TM, Chen Y, Mulloy JC, et al. The AS-RBM15 lncRNA enhances RBM15 protein translation during megakaryocyte differentiation. EMBO Rep. 2016;17(6):887–900. doi:10.15252/embr.201541970. Epub 2016/04/28.
  • Hu M, Yang Y, Ji Z, Luo J. RBM15 functions in blood diseases. Curr Cancer Drug Targets. 2016;16(7):579–585. doi:10.2174/1568009616666160112105706. Epub 2016/01/14.
  • Kuvardina ON, Herglotz J, Kolodziej S, Kohrs N, Herkt S, Wojcik B, Oellerich T, Corso J, Behrens K, Kumar A, et al. RUNX1 represses the erythroid gene expression program during megakaryocytic differentiation. Blood. 2015;125(23):3570–3579. doi:10.1182/blood-2014-11-610519. Epub 2015/04/26.
  • Lyu Y, Lou J, Yang Y, Feng J, Hao Y, Huang S, Yin L, Xu J, Huang D, Ma B, et al. Dysfunction of the WT1-MEG3 signaling promotes AML leukemogenesis via p53-dependent and -independent pathways. Leukemia. 2017;31(12):2543–2551. doi:10.1038/leu.2017.116. Epub 2017/04/13.
  • Verduci L, Tarcitano E, Strano S, Yarden Y, Blandino G. CircRnas: role in human diseases and potential use as biomarkers. Cell Death Dis. 2021;12(5). doi:10.1038/s41419-021-03743-3.
  • Bai X, Huang Y, Zhang K, Huang W, Mu Y, Li Y, Ouyang H. CircNf1-mediated CXCL12 expression in the spinal cord contributes to morphine analgesic tolerance. Brain Behav Immun. 2022;107:140–151. doi:10.1016/j.bbi.2022.09.018.
  • Yang J, Hou G, Chen H, Chen W, Ge J. Circ_0000189 promotes the malignancy of Glioma cells via regulating miR-192-5p-ZEB2 Axis. Oxid Med Cell Longev. 2022;2022:2521951. doi:10.1155/2022/2521951.
  • Liu X, Liu B, Zhou M, Fan F, Yu M, Gao C, Lu Y, Luo Y. Circular RNA HIPK3 regulates human lens epithelial cells proliferation and apoptosis by targeting the miR-193a/cryaa axis. Biochem Biophys Res Commun. 2018;503(4):2277–2285. doi:10.1016/j.bbrc.2018.06.149.
  • Alhasan A, Izuogu OG, Al-Balool HH, Steyn JS, Evans A, Colzani M, Ghevaert C, Mountford JC, Marenah L, Elliott DJ, et al. Circular RNA enrichment in platelets is a signature of transcriptome degradation. Blood. 2016;127(9):E1–11. doi:10.1182/blood-2015-06-649434.
  • Neu CT, Gutschner T, Haemmerle M. Post-transcriptional expression control in platelet biogenesis and function. Int J Mol Sci. 2020;21(20):7614. doi:10.3390/ijms21207614.
  • Xia P, Wang S, Ye B, Du Y, Li C, Xiong Z, Qu Y, Fan Z. A circular RNA protects dormant hematopoietic stem cells from DNA sensor cGAS-mediated exhaustion. Immunity. 2018;48(4):688–701 e687. doi:10.1016/j.immuni.2018.03.016.
  • Neunert C, Lim W, Crowther M, Cohen A, Solberg L, Jr., Crowther MA. American society of H. The American Society of Hematology 2011 evidence-based practice guideline for immune thrombocytopenia. Blood. 2011;117:4190–4207. doi:10.1182/blood-2010-08-302984. Epub 2011/02/18.
  • Neunert CE. Current management of immune thrombocytopenia. Hematology Am Soc Hematol Educ Program. 2013;2013(1):276–282. doi:10.1182/asheducation-2013.1.276. Epub 2013/12/10.
  • Varga-Szabo D, Pleines I, Nieswandt B. Cell adhesion mechanisms in platelets. Arterioscler Thromb Vasc Biol. 2008;28(3):403–412. doi:10.1161/ATVBAHA.107.150474. Epub 2008/01/05.
  • Zuo B, Zhai J, You L, Zhao Y, Yang J, Weng Z, Dai L, Wu Q, Ruan C, He Y. Plasma microRnas characterising patients with immune thrombocytopenic purpura. Thromb Haemost. 2017;117(07):1420–1431. doi:10.1160/TH-16-06-0481. Epub 2017/04/21.
  • Grozovsky R, Begonja AJ, Liu K, Visner G, Hartwig JH, Falet H, Hoffmeister KM. The Ashwell-Morell receptor regulates hepatic thrombopoietin production via JAK2-STAT3 signaling. Nat Med. 2015;21(1):47–54. doi:10.1038/nm.3770.
  • Lambert MP, Gernsheimer TB. Clinical updates in adult immune thrombocytopenia. Blood. 2017;129(21):2829–2835. doi:10.1182/blood-2017-03-754119. Epub 2017/04/19.
  • Wang Y, Pang N, Wang X, Liu Y, Wang X, Wang L, Sun M, Yasen H, Zhao F, Fan W, et al. Percentages of PD-1(+)CD4(+)T cells and PD-L1(+)DCs are increased and sPD-1 level is elevated in patients with immune thrombocytopenia. Hum Vaccin Immunother. 2018;14(4):832–838. doi:10.1080/21645515.2017.1342913. Epub 2018/01/16.
  • Birtas Atesoglu E, Tarkun P, Demirsoy ET, Geduk A, Mehtap O, Batman A, Kaya F, Cekmen MB, Gulbas Z, Hacihanefioglu A. Soluble Programmed Death 1 (PD-1) is decreased in patients with Immune Thrombocytopenia (ITP): Potential Involvement of PD-1 pathway in ITP immunopathogenesis. Clin Appl Thromb Hemost. 2016;22(3):248–251. doi:10.1177/1076029614562952. Epub 2014/12/17.
  • Zhong J, Chen S, Xu L, Lai J, Liao Z, Zhang T, Yu Z, Lu Y, Yang L, Wu X, et al. Lower expression of PD-1 and PD-L1 in peripheral blood from patients with chronic ITP. Hematology. 2016;21(9):552–557. doi:10.1080/10245332.2016.1155347. Epub 2016/04/15.
  • Lownik JC, Luker AJ, Damle SR, Cooley LF, El Sayed R, Hutloff A, Pitzalis C, Martin RK, El Shikh MEM, Conrad DH. ADAM10-mediated ICOS ligand shedding on B cells is necessary for proper T cell ICOS regulation and T follicular helper responses. J Immunol. 2017;199(7):2305–2315. doi:10.4049/jimmunol.1700833. Epub 2017/08/18.
  • Qiao J, Luo Q, Liu N, Wei G, Wu X, Lu J, Tang K, Wu Y, Zi J, Li X, et al. Increased ADAM10 expression in patients with immune thrombocytopenia. Int Immunopharmacol. 2018;55:63–68. doi:10.1016/j.intimp.2017.12.004. Epub 2017/12/11.
  • Burenbatu, Borjigin M, Eerdunduleng, Huo W, Gong C, Hasengaowa, Zhang G, Longmei, Li M, Zhang X, et al. Profiling of miRNA expression in immune thrombocytopenia patients before and after Qishunbaolier (QSBLE) treatment. Biomed Pharmacother. 2015;75:196–204. doi:10.1016/j.biopha.2015.07.022. Epub 2015/08/25.
  • Qian BH, Ye X, Zhang L, Sun Y, Zhang JR, Gu ML, Qin Q, Chen J, Deng AM. Increased miR-155 expression in peripheral blood mononuclear cells of primary immune thrombocytopenia patients was correlated with serum cytokine profiles. Acta Haematol. 2015;133(3):257–263. doi:10.1159/000362150. Epub 2014/11/22.
  • Zhao H, Li H, Du W, Zhang D, Ge J, Xue F, Zhou Z, Yang R. Reduced MIR130A is involved in primary immune thrombocytopenia via targeting TGFB1 and IL18. Br J Haematol. 2014;166(5):767–773. doi:10.1111/bjh.12934. Epub 2014/05/08.
  • Chang Y, Chen X, Tian Y, Gao X, Liu Z, Dong X, Wang L, He F, Zhou J. Downregulation of microRNA-155-5p prevents immune thrombocytopenia by promoting macrophage M2 polarization via the SOCS1-dependent PD1/PDL1 pathway. Life Sci. 2020;257:118057. doi:10.1016/j.lfs.2020.118057. Epub 2020/07/08.
  • Li JQ, Tian JM, Fan XR, Wang ZY, Ling J, Wu XF, Yang FY, Xia YL. miR-106b-5p induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura through NR4A3/Foxp3 pathway. Cell Cycle. 2020;19(11):1265–1274. doi:10.1080/15384101.2020.1746485. Epub 2020/04/24.
  • Wang Y, Guo Y, Zhang X, Zhao H, Zhang B, Wu Y, Zhang J. The role and mechanism of miR-557 in inhibiting the differentiation and maturation of megakaryocytes in immune thrombocytopenia. RNA Biol. 2021;18(11):1953–1968. doi:10.1080/15476286.2021.1884783. Epub 2021/02/16.
  • Julious SA, Walters SJ. Estimating effect sizes for health-related quality of life outcomes. Stat Methods Med Res. 2014;23(5):430–439. doi:10.1177/0962280213476379. Epub 2013/02/22.
  • Li H, Hao Y, Zhang D, Fu R, Liu W, Zhang X, Xue F, Yang R. Aberrant expression of long noncoding RNA TMEVPG1 in patients with primary immune thrombocytopenia. Autoimmunity. 2016;49(7):496–502. doi:10.3109/08916934.2016.1167192. Epub 2016/04/07.
  • Li JQ, Hu SY, Wang ZY, Lin J, Jian S, Dong YC, Wu XF, Dai L, Cao LJ. Long non-coding RNA MEG3 inhibits microRNA-125a-5p expression and induces immune imbalance of Treg/Th17 in immune thrombocytopenic purpura. Biomed Pharmacother. 2016;83:905–911. doi:10.1016/j.biopha.2016.07.057. Epub 2016/10/25.
  • Li J, Tian J, Lu J, Wang Z, Ling J, Wu X, Yang F, Xia Y. LncRNA GAS5 inhibits Th17 differentiation and alleviates immune thrombocytopenia via promoting the ubiquitination of STAT3. Int Immunopharmacol. 2020;80:106127. doi:10.1016/j.intimp.2019.106127. Epub 2020/01/25.
  • Huang Y, Qiao Y, Zhao Y, Li Y, Yuan J, Zhou J, Sun H, Wang H. Large scale RNA-binding proteins/LncRNAs interaction analysis to uncover lncRNA nuclear localization mechanisms. Brief Bioinform. 2021;22(6): bbab195. doi:10.1093/bib/bbab195.
  • Winkle M, El-Daly SM, Fabbri M, Calin GA. Noncoding RNA therapeutics — challenges and potential solutions. Nat Rev Drug Discov. 2021;20(8):629–651. doi:10.1038/s41573-021-00219-z.