1,617
Views
0
CrossRef citations to date
0
Altmetric
Case Report

Genomics of clonal evolution in a rare essential thrombocythemia with coexisting Type 2 CALR and MPL S204P mutations

ORCID Icon, , , , , , & show all
Article: 2176167 | Received 23 Nov 2022, Accepted 30 Jan 2023, Published online: 14 Feb 2023

References

  • Arber DA, Orazi A, Hasserjian R, Thiele J, Borowitz MJ, Le Beau MM, Bloomfield CD, Cazzola M, Vardiman JW. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood. 2016;127(20):2391–4. doi:10.1182/blood-2016-03-643544.
  • Cazzola M, Kralovics R. From Janus kinase 2 to calreticulin: the clinically relevant genomic landscape of myeloproliferative neoplasms. Blood. 2014;123(24):3714–3719. doi:10.1182/blood-2014-03-530865.
  • Tefferi A, Pardanani A. Myeloproliferative neoplasms: a contemporary review. JAMA Oncol. 2015;1(1):97–105. doi:10.1001/jamaoncol.2015.89.
  • Jang MA, Seo MY, Choi KJ, Hong DS. A rare case of essential thrombocythemia with coexisting JAK2 and MPL driver mutations. J Korean Med Sci. 2020;35(23):e168. doi:10.3346/jkms.2020.35.e168.
  • Kang MG, Choi HW, Lee JH, Choi YJ, Choi HJ, Shin JH, Suh SP, Szardenings M, Kim HR, Shin MG. Coexistence of JAK2 and CALR mutations and their clinical implications in patients with essential thrombocythemia. Oncotarget. 2016;7(35):57036–57049. doi:10.18632/oncotarget.10958.
  • Jeromin S, Kohlmann A, Meggendorfer M, Schindela S, Perglerová K, Nadarajah N, Kern W, Haferlach C, Haferlach T, Schnittger S. Next-generation deep-sequencing detects multiple clones of CALR mutations in patients with BCR-ABL1 negative MPN. Leukemia. 2016;30(4):973–976. doi:10.1038/leu.2015.207.
  • Zhang QG, Wang J, Gong WY, Jing QC. Clonal evolution in a chronic neutrophilic leukemia patient. Hematology. 2019;24(1):455–458. doi:10.1080/16078454.2019.1613291.
  • Wang J, Zhang B, Chen B, Rf Z, Qg Z, Li J, Yang YG, Zhou M, Shao XY, Xu Y, et al. JAK2, MPL, and CALR mutations in Chinese Han patients with essential thrombocythemia. Hematology. 2017;22(3):145–148. doi:10.1080/10245332.2016.1252003.
  • Milosevic Feenstra JD, Nivarthi H, Gisslinger H, Leroy E, Rumi E, Chachoua I, Bagienski K, Kubesova B, Pietra D, Gisslinger B, et al. Whole-exome sequencing identifies novel MPL and JAK2 mutations in triple-negative myeloproliferative neoplasms. Blood. 2016;127(3):325–332. doi:10.1182/blood-2015-07-661835.
  • Cabagnols X, Favale F, Pasquier F, Messaoudi K, Defour JP, Ianotto JC, Marzac C, Couédic Jp L, Droin N, Chachoua I, et al. Presence of atypical thrombopoietin receptor (MPL) mutations in triple-negative essential thrombocythemia patients. Blood. 2016;127(3):333–342. doi:10.1182/blood-2015-07-661983.
  • Rumi E, Pietra D, Guglielmelli P, Bordoni R, Casetti I, Milanesi C, Sant’antonio E, Ferretti V, Pancrazzi A, Rotunno G, et al. Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative. Acquired copy-neutral loss of heterozygosity of chromosome 1p as a molecular event associated with marrow fibrosis in MPL-mutated myeloproliferative neoplasms. Blood. 2013;121(21):4388–4395. doi:10.1182/blood-2013-02-486050.
  • Rumi E, Pietra D, Ferretti V, Klampfl T, Harutyunyan AS, Milosevic JD, Them NC, Berg T, Elena C, Casetti IC, et al. Associazione Italiana per la Ricerca sul Cancro Gruppo Italiano Malattie Mieloproliferative Investigators. JAK2 or CALR mutation status defines subtypes of essential thrombocythemia with substantially different clinical course and outcomes. Blood. 2014;123(10):1544–1551. doi:10.1182/blood-2013-11-539098.
  • Mansier O, Luque Paz D, Ianotto JC, Le Bris Y, Chauveau A, Boyer F, Conejero C, Fitoussi O, Riou J, Adiko D, et al. Clinical and biological characterization of MPN patients harboring two driver mutations, a French intergroup of myeloproliferative neoplasms (FIM) study. Am J Hematol. 2018;93(4):E84–86. doi:10.1002/ajh.25014.
  • Thompson ER, Nguyen T, Kankanige Y, Yeh P, Ingbritsen M, McBean M, Semple T, Mir Arnau G, Burbury K, Lee N, et al. Clonal independence of JAK2 and CALR or MPL mutations in comutated myeloproliferative neoplasms demonstrated by single cell DNA sequencing. Haematologica. 2021;106(1):313–315. doi:10.3324/haematol.2020.260448.
  • Makishima H. Somatic SETBP1 mutations in myeloid neoplasms. Int J Hematol. 2017;105(6):732–742. doi:10.1007/s12185-017-2241-1.
  • Meggendorfer M, Bacher U, Alpermann T, Haferlach C, Kern W, Gambacorti-Passerini C, Haferlach T, Schnittger S. SETBP1 mutations occur in 9% of MDS/MPN and in 4% of MPN cases and are strongly associated with atypical CML, monosomy 7, isochromosome i(17)(q10), ASXL1 and CBL mutations. Leukemia. 2013;27(9):1852–1860. doi:10.1038/leu.2013.133.
  • Hou HA, Kuo YY, Tang JL, Chou WC, Yao M, Lai YJ, Lin CC, Chen CY, Liu CY, Tseng MH, et al. Clinical implications of the SETBP1 mutation in patients with primary myelodysplastic syndrome and its stability during disease progression. Am J Hematol. 2014;89(2):181–186. doi:10.1002/ajh.23611.
  • Vannucchi AM, Lasho TL, Guglielmelli P, Biamonte F, Pardanani A, Pereira A, Finke C, Score J, Gangat N, Mannarelli C, et al. Mutations and prognosis in primary myelofibrosis. Leukemia. 2013;27(9):1861–1869. doi:10.1038/leu.2013.119.
  • Guglielmelli P, Bartalucci N, Contini E, Rotunno G, Pacilli A, Romagnoli S, Mannelli L, Mannelli F, Coltro G, Pancrazzi A, et al. Involvement of RUNX1 pathway is a common event in the leukemic transformation of chronic myeloproliferative neoplasms (MPNs). Blood. 2019;134(Supplement_1):2968. doi:10.1182/blood-2019-129094.
  • Sanada M, Suzuki T, Shih LY, Otsu M, Kato M, Yamazaki S, Tamura A, Honda H, Sakata-Yanagimoto M, Kumano K, et al. Gain-of-function of mutated C-CBL tumour suppressor in myeloid neoplasms. Nature. 2009;460(7257):904–908. doi:10.1038/nature08240.
  • Laskowski RA, Stephenson JD, Sillitoe I, Orengo CA, Jm T. VarSite: disease variants and protein structure. Protein Sci. 2020;29(1):111–119. doi:10.1002/pro.3746.
  • Beer PA, Delhommeau F, LeCouédic JP, Dawson MA, Chen E, Bareford D, Kusec R, McMullin MF, Harrison CN, Vannucchi AM, et al. Two routes to leukemic transformation after a JAK2 mutation-positive myeloproliferative neoplasm. Blood. 2010;115(14):2891–2900. doi:10.1182/blood-2009-08-236596.
  • Tefferi A, Guglielmelli P, Lasho TL, Coltro G, Finke CM, Loscocco GG, Sordi B, Szuber N, Rotunno G, Pacilli A, et al. Mutation-enhanced international prognostic systems for essential thrombocythaemia and polycythaemia vera. Br J Haematol. 2020;189(2):291–302. doi:10.1111/bjh.16380.
  • Lundberg P, Karow A, Nienhold R, Looser R, Hao-Shen H, Nissen I, Girsberger S, Lehmann T, Passweg J, Stern M, et al. Clonal evolution and clinical correlates of somatic mutations in myeloproliferative neoplasms. Blood. 2014;123(14):2220–2228. doi:10.1182/blood-2013-11-537167.
  • Rampal R, Ahn J, Abdel-Wahab O, Nahas M, Wang K, Lipson D, Otto GA, Yelensky R, Hricik T, McKenney AS, et al. Genomic and functional analysis of leukemic transformation of myeloproliferative neoplasms. Proc Natl Acad Sci USA. 2014;111(50):E5401–10. doi:10.1073/pnas.1407792111.
  • Partouche N, Conejero C, Barathon Q, Moroch J, Tulliez M, Cordonnier C, Giraudier S. Emergence of MPLW515 mutation in a patient with CALR deletion: Evidence of secondary acquisition of MPL mutation in the CALR clone. Hematol Oncol. 2018;36(1):336–339. doi:10.1002/hon.2431.
  • Bernal M, Jiménez P, Puerta J, Ruíz-Cabello F, Jurado M. Co-mutated CALR and MPL driver genes in a patient with myeloproliferative neoplasm. Ann Hematol. 2017;96(8):1339–1401. doi:10.1007/s00277-017-3023-9.