1,692
Views
2
CrossRef citations to date
0
Altmetric
Special Review Series: Provocative Questions in Platelet Omics Studies

What can we learn from the platelet lipidome?

ORCID Icon, , , , & ORCID Icon
Article: 2182180 | Received 19 Jan 2023, Accepted 14 Feb 2023, Published online: 06 Mar 2023

References

  • O’donnell VB, Ekroos K, Liebisch G, Wakelam M. Lipidomics: current state of the art in a fast moving field. WIREs Syst Biol Med. 2020;12:e1466. doi: 10.1002/wsbm.1466.
  • Han X, Gross RW. The foundations and development of lipidomics. J Lipid Res. 2022;63:100164. doi: 10.1016/j.jlr.2021.100164.
  • Khoury S, Canlet C, Lacroix MZ, Berdeaux O, Jouhet J, Bertrand-Michel J. Quantification of lipids: model, reality, and compromise. Biomolecules. 2018;8:174. doi: 10.3390/biom8040174.
  • Fahy E, Subramaniam S, Brown HA, Glass CK, Merrill AH, Murphy RC, Raetz CR, Russell DW, Seyama Y, Shaw W, et al. A comprehensive classification system for lipids. J Lipid Res. 2005;46:839–6. doi: 10.1194/jlr.E400004-JLR200.
  • McDonald JG, Ejsing CS, Kopczynski D, Holčapek M, Aoki J, Arita M, Arita M, Baker ES, Bertrand-Michel J, Bowden JA, et al. Introducing the lipidomics minimal reporting checklist. Nat Metab. 2022;4:1086–1088. doi: 10.1038/s42255-022-00628-3.
  • Meikle TG, Huynh K, Giles C, Meikle PJ. Clinical lipidomics: realizing the potential of lipid profiling. J Lipid Res. 2021;62:100127. doi: 10.1016/j.jlr.2021.100127.
  • O’donnell VB, Murphy RC, Watson SP. Platelet lipidomics: modern day perspective on lipid discovery and characterization in platelets. Circ Res. 2014;114:1185–1203. doi: 10.1161/CIRCRESAHA.114.301597.
  • Chatterjee M. Platelet lipidome: dismantling the “Trojan horse” in the bloodstream. J Thromb Haemost. 2020;18:543–557. doi: 10.1111/jth.14721.
  • Vardon Bounes F, Mujalli A, Cenac C, Severin S, Lefaouder P, Chicanne G, Gaits-Iacovoni F, Minville V, Gratacap MP, Payrastre B. The importance of blood platelet lipid signalling in thrombosis and in sepsis. Adv Biol Reg. 2017;17:30161–30166. doi: 10.1016/j.jbior.2017.09.011.
  • Slatter DA, Aldrovandi M, O’connor A, Allen SM, Brasher CJ, Murphy RC, Mecklemann S, Ravi S, Darley-Usmar V, O’donnell VB. Mapping the human platelet lipidome reveals cytosolic phospholipase A2 as a regulator of mitochondrial bioenergetics during activation. Cell Metab. 2016;23:930–944. doi: 10.1016/j.cmet.2016.04.001.
  • FitzGerald GA. Human platelet lipidomics: variance, visualization, flux, and fuel. Cell Metab. 2016;23:757–759. doi: 10.1016/j.cmet.2016.04.025.
  • Mujalli A, Chicanne G, Bertrand-Michel J, Viars F, Stephens L, Hawkins P, Viaud J, Gaits-Iacovoni F, Severin S, Gratacap MP, et al. Profiling of phosphoinositide molecular species in human and mouse platelets identifies new species increasing following stimulation. Biochim Biophys Acta Lipids. 2018;1863:1121–1131. doi: 10.1016/j.bbalip.2018.06.009.
  • Viaud J, Mansour R, Antkowiak A, Mujalli A, Valet C, Chicanne G, Xuereb JM, Terrisse AD, Severin S, Gratacap MP, et al. Phosphoinositides: important lipids in the coordination of cell dynamics. Biochimie. 2016;125:250–258. doi: 10.1016/j.biochi.2015.09.005.
  • Ribes A, Oprescu A, Viaud J, Hnia K, Chicanne G, Xuereb J-M, Severin S, Gratacap M-P, Payrastre B. Phosphoinositide 3-kinases in platelets, thrombosis and therapeutics. Biochem J. 2020;477:4327–4342. doi: 10.1042/BCJ20190402.
  • Min SH, Abrams CS. Regulation of platelet plug formation by phosphoinositide metabolism. Blood. 2013;122:1358–1365. doi: 10.1182/blood-2013-05-427716.
  • Morioka S, Nakamishi H, Yamamoto T, Hasegawa J, Tokuda E, Hikita T, Sakihara T, Kugii Y, Oneyama C, Yamazaki M, et al. A mass spectrometric method for in-depth profiling of phosphoinositide regioisomers and their disease-associated regulation. Nat Commun. 2022;13:83. doi: 10.1038/s41467-021-27648-z.
  • Li P, Lämmerhofer M. Isomer selective comprehensive lipidomics analysis of phosphoinositides in biological samples by liquid chromatography with data independent acquisition tandem mass spectrometry. Anal Chem. 2021;93:9583–9592. doi: 10.1021/acs.analchem.1c01751.
  • Peng B, Geue S, Coman C, Münzer P, Kopczynski D, Has C, Hoffmann N, Manke M-C, Lang F, Sickmann, et al. Identification of key lipids critical for platelet activation by comprehensive analysis of the platelet lipidome. Blood. 2018;132:e1–12. doi: 10.1182/blood-2017-12-822890.
  • McFadyen JD, Peter K. Platelet lipidomics and function: joining the dots. Blood. 2018;132:465–466. doi: 10.1182/blood-2018-06-854950.
  • Dahm F, Nocito A, Bielawska A, Lang KS, Georgiev P, Asmis LM, Bielawski J, Madon J, Hannun YA, Clavien PA. Distribution and dynamic changes of sphingolipids in blood in response to platelet activation. J Thromb Haemost. 2006;4:2704–2709. doi: 10.1111/j.1538-7836.2006.02241.x.
  • Adler DH, Cogan JD, Phillips JA, Schnetz-Boutaud N, Milne GL, Iverson T, Stein JA, Brenner DA, Morrow JD, Boutaud O, et al. Inherited human cPla(2alpha) deficiency is associated with impaired eicosanoids biosynthesis, small intestine ulceration and platelet dysfunction. J Clin Invest. 2008;118:2121–2131. doi: 10.1172/JCI30473.
  • Duvernay MT, Matafonov A, Lindsley CW, Hamm HE. Platelet lipidomic profiling: novel insight into cytosolic phospholipase A2α activity and its role in human platelet activation. Biochemistry. 2015;54:5578–5588. doi: 10.1021/acs.biochem.5b00549.
  • Thomas CP, Morgan LT, Maskrey BH, Murphy RC, Kühn H, Hazen SL, Goodall AH, Hamali HA, Collins PW, O’donnell VB. Phospholipid-esterified eicosanoids are generated in agonist-activated human platelets and enhance tissue factor-dependent thrombin generation. J Biol Chem. 2010;285:6891–6903. doi: 10.1074/jbc.M109.078428.
  • Aldrovandi M, Hammond VJ, Podmore H, Hornshaw M, Clark SR, Marnett LJ, Slatter DA, Murphy RC, Collins PW, O’donnel VB. Human platelets generate phospholipid-esterified prostaglandins via cyclooxygenase-1 that are inhibited by low dose aspirin supplementation. J Lipid Res. 2013;54:3085–3097. doi: 10.1194/jlr.M041533.
  • Lv J, Zhang L, Yan F, Wang X. Clinical lipidomics: a new way to diagnose human diseases. Clin Transl Med. 2018;7:12. doi: 10.1186/s40169-018-0190-9.
  • Owen JS, Hutton RA, Day RC, Bruckdorfer KR, McIntyre N. Platelet lipid composition and platelet aggregation in human liver disease. J Lipid Res. 1981;22:423–430. doi: 10.1016/S0022-2275(20)34955-5.
  • Prisco D, Rogasi PG, Paniccia R, Coppo M, Abbate R, Gensini GF, Serneri GGN. Altered lipid composition and thromboxane A2 formation in platelets from patients affected by IIa hyperlipoproteinemia. Thromb Res. 1988;50:593–604. doi: 10.1016/0049-3848(88)90318-0.
  • Shastri KM, Carvalho AC, Lees RS. Platelet function and platelet lipid composition in the dyslipoproteinemias. J Lipid Res. 1980;21:467–472. doi: 10.1016/S0022-2275(20)39797-2.
  • García-Rubio D, Rodríguez-Varela M, Martínez-Vieyra I, de la Mora MB, Méndez-Méndez JV, Durán-Álvarez JC, Cerecedo D. Alterations to the contents of plasma membrane structural lipids are associated with structural changes and compartmentalization in platelets in hypertension. Exp Cell Res. 2019;385:111692. doi: 10.1016/j.yexcr.2019.111692.
  • Hu Q, Wang M, Cho MS, Wang C, Nick AM, Thiagarajan P, Aung FM, Han X, Sood AK, Afshar-Kharghan V. Lipid profile of platelets and platelet-derived microparticles in oarian cancer. Biochim Biophys Acta Clin. 2016;6:76–81. doi: 10.1016/j.bbacli.2016.06.003.
  • Gibney MJ, Bolton-Smith C. The effect of a dietary supplement of n-3 polyunsaturated fat on platelet lipid composition, platelet function and platelet plasma membrane fluidity in healthy volunteers. Br J Nutr. 1988;60:5–12. doi: 10.1079/BJN19880070.
  • Lhermusier T, Chap H, Payrastre B. Platelet membrane phospholipid asymmetry: from the characterization of a scramblase activity to the identification of an essential protein mutated in Scott syndrome. J Thromb Haemost. 2011;9:1883–1891. doi: 10.1111/j.1538-7836.2011.04478.x.
  • Mao GF, Vaidyula VR, Kunapuli SP, Rao AK. Lineage-specific defect in gene expression in human platelet phospholipase C-β2 deficiency. Blood. 2002;99:905–911. doi: 10.1182/blood.V99.3.905.
  • Egot M, Lasne D, Poirault-Chassac S, Mirault T, Pidard D, Dreano E, Elie C, Gandrille S, Marchelli A, Baruch D, et al. Role of oculocerebrorenal syndrome of Lowe (OCRL) protein in megakaryocyte maturation, platelet production and functions: a study in patients with Lowe syndrome. Br J Haematol. 2021;192:909–921. doi: 10.1111/bjh.17346.
  • Kanaji T, Kanaji S, Montgomery RR, Patel SB, Newman PJ. Platelet hyperreactivity explains the bleeding abnormality and macrothrombocytopenia in a murine model of sitosterolemia. Blood. 2013;122:2732–2742. doi: 10.1182/blood-2013-06-510461.
  • Lagoutte-Renosi J, Allemand F, Ramseyer C, Rabani V, Davani S. Influence of antiplatelet agents on the lipid composition of platelet plasma membrane: a lipidomics approach with ticagrelor and its active metabolite. Int J Mol Sci. 2021;22:1432. doi: 10.3390/ijms22031432.
  • Schuurman AR, Léopold V, Pereverzeva L, Chouchane O, Rijnders TDY, de Brabander J, Douma RA, van Weeghel M, Wever E, Schomaker BV, et al. The platelet lipidome is altered in patients with COVID-19 and correlates with platelet reactivity. Thromb Haemost. 2022;122:1683–1692. doi: 10.1055/s-0042-1749438.
  • McFadyen JD, Meikle PJ, Peter K. Platelet lipidomics: a window of opportunity to assess cardiovascular risk? Eur Heart J. 2017;38:2006–2008. doi: 10.1093/eurheartj/ehx258.
  • Chatterjee M, Rath D, Schlotterbeck J, Rheinlaender J, Walker-Algaier B, Alnaggar N, Zdanyte M, Müller I, Borst O, Geisler T, et al. Regulation of oxidized platelet lipidome: implications for coronary artery disease. Eur Heart J. 2017;38:1993–2005. doi: 10.1093/eurheartj/ehx146.
  • Harm T, Bild A, Dittrich K, Goldschmied A, Nestele J, Chatterjee M, Fu X, Kolb K, Castor T, Borst O, et al. Acute coronary syndrome is associated with a substantial change in the platelet lipidome. Cardiovasc Res. 2022;118:1904–1916. doi: 10.1093/cvr/cvab238.
  • Zaldivia MTK, McFadyen JD, Lim B, Wang X, Peter K. Platelet-derived microvesicles in cardiovascular diseases. Front Cardiovasc Med. 2017;4:74. doi: 10.3389/fcvm.2017.00074.
  • Chicanne G, Barrachina MN, Durbec A, Bertrand-Michel J, Troitiño S, Hermida-Nogueira L, Sueiro AM, Pardo M, Payrastre B, García A. Platelet lipidome fingerprint: new assistance to characterize platelet dysfunction in obesity. Int J Mol Sci. 2022;23:8326. doi: 10.3390/ijms23158326.
  • Barrachina MN, Sueiro AM, Casas V, Izquierdo I, Hermida-Nogueira L, Guitian E, Casanueva FF, Abian J, Carrascal M, Pardo M, et al. A combination of proteomic approaches identifies a panel of circulating extracellular vesicle proteins related to the risk of suffering cardiovascular disease in obese patients. Proteomics. 2019;19:e1800248. doi: 10.1002/pmic.201800248.
  • Green SM, Padula MP, Marks DC, Johnson L. The lipid composition of platelets and the impact of storage: an overview. Transfus Med Rev. 2020;34:108–116. doi: 10.1016/j.tmrv.2019.12.001.
  • Valkonen S, Holopainen M, Colas RA, Impola U, Dalli J, Käkelä R, Siljander PRM, Laitinen S. Lipid mediators in platelet concentrate and extracellular vesicles: molecular mechanisms from membrane glycerophospholipids to bioactive molecules. Biochim Biophys Acta Mol Cell Biol Lipids. 2019;1864:1168–1182. doi: 10.1016/j.bbalip.2019.03.011.
  • Pienimaeki-Roemer A, Ruebsaamen K, Boettcher A, Orso E, Scherer M, Liebisch G, Kilalic D, Ahrens N, Schmitz G. Stored platelets alter glycerophospholipid and sphingolipid species, which are differentially transferred to newly released vesicles. Transfusion. 2013;53:612–626. doi: 10.1111/j.1537-2995.2012.03775.x.
  • Duchez AC, Fauteux-Daniel S, Ebermeyer T, Heestermans M, Arthaud CA, Eyraud MA, Prier A, Audoux E, Portais JC, Bertrand-Michel J, et al. Lipidomic analysis of differently prepared platelet concentrates in additive solution during storage. Blood Transfus. 2022. in press. doi: 10.2450/2022.0144-22.
  • Djambazova KV, Klein DR, Migas LG, Neumann EK, Rivera ES, Van de Plas R, Caprioli RM, Spraggins JM. Resolving the complexity of spatial lipidomics using MALDI TIMS imaging mass spectrometry. Anal Chem. 2020;92:13290–13297. doi: 10.1021/acs.analchem.0c02520.