483
Views
0
CrossRef citations to date
0
Altmetric
Special Review Series: Provocative Questions in Platelet Omics Studies

Special review series: provocative questions in platelet omics studies

ORCID Icon & ORCID Icon

References

  • Giometti CS, Anderson NG. Protein changes in activated human platelets. Clin Chem. 1984;30(12):2078–3. doi: 10.1093/clinchem/30.12.2078.
  • Gravel P, Sanchez JC, Walzer C, Golaz O, Hochstrasser DF, Balant LP, Hughes GJ, Garcia-Sevilla J, Guimon J. Human blood platelet protein map established by two-dimensional polyacrylamide gel electrophoresis. Electrophoresis. 1995;16(1):1152–9. doi: 10.1002/elps.11501601191.
  • Marcus K, Immler D, Sternberger J, Meyer HE. Identification of platelet proteins separated by two-dimensional gel electrophoresis and analyzed by matrix assisted laser desorption/ionization-time of flight-mass spectrometry and detection of tyrosine-phosphorylated proteins. Electrophoresis. 2000(21):2622–36. doi: 10.1002/1522-2683(20000701)21:13<2622:AID-ELPS2622>3.0.CO;2-3.
  • O’Neill EE, Brock CJ, von Kriegsheim AF, Pearce AC, Dwek RA, Watson SP, Hebestreit HF Towards complete analysis of the platelet proteome. Proteomics. 2002;2:288–305. doi: 10.1002/1615-9861(200203)2:3<288:aid-prot288>3.0.co;2-0
  • Garcia A, Prabhakar S, Brock CJ, Pearce AC, Dwek RA, Watson SP, Hebestreit HF, Zitzmann N. Extensive analysis of the human platelet proteome by two-dimensional gel electrophoresis and mass spectrometry. Proteomics. 2004;4(3):656–68. doi: 10.1002/pmic.200300665.
  • Martens L, Van Damme P, Van Damme J, Staes A, Timmerman E, Ghesquiere B, Thomas GR, Vandekerckhove J, Gevaert K. The human platelet proteome mapped by peptide-centric proteomics: a functional protein profile. Proteomics. 2005;5(12):3193–204. doi: 10.1002/pmic.200401142.
  • Garcia A, Prabhakar S, Hughan S, Anderson TW, Brock CJ, Pearce AC, Dwek RA, Watson SP, Hebestreit HF, Zitzmann N. Differential proteome analysis of TRAP-activated platelets: involvement of DOK-2 and phosphorylation of RGS proteins. Blood. 2004;103(6):2088–95. doi: 10.1182/blood-2003-07-2392.
  • Garcia A, Senis YA, Antrobus R, Hughes CE, Dwek RA, Watson SP, Zitzmann N. A global proteomics approach identifies novel phosphorylated signaling proteins in GPVI-activated platelets: involvement of G6f, a novel platelet Grb2-binding membrane adapter. Proteomics. 2006;6(19):5332–43. doi: 10.1002/pmic.200600299.
  • Maguire PB, Wynne KJ, Harney DF, O’Donoghue NM, Stephens G, Fitzgerald DJ. Identification of the phosphotyrosine proteome from thrombin activated platelets. Proteomics. 2002;2(6):642–8. doi: 10.1002/1615-9861(200206)2:6<642:AID-PROT642>3.0.CO;2-I.
  • Suzuki-Inoue K, Fuller GL, Garcia A, Eble JA, Pohlmann S, Inoue O, Gartner TK, Hughan SC, Pearce AC, Laing GD, et al. A novel Syk-dependent mechanism of platelet activation by the C-type lectin receptor CLEC-2. Blood. 2006;107(2):542–9. doi: 10.1182/blood-2005-05-1994.
  • Izquierdo I, Barrachina MN, Hermida-Nogueira L, Casas V, Moran LA, Lacerenza S, Pinto-Llorente R, Eble JA, de Los Rios V, Dominguez E, et al. A comprehensive tyrosine phosphoproteomic analysis reveals novel components of the platelet CLEC-2 signaling cascade. Thromb Haemost. 2020;120(2):262–76. doi: 10.1055/s-0039-3400295.
  • Parguina AF, Alonso J, Rosa I, Velez P, Gonzalez-Lopez MJ, Guitian E, Eble JA, Loza MI, Garcia A. A detailed proteomic analysis of rhodocytin-activated platelets reveals novel clues on the CLEC-2 signalosome: implications for CLEC-2 signaling regulation. Blood. 2012;120(26):e117–126. doi: 10.1182/blood-2012-09-456004.
  • Aslan JE. Platelet proteomes, pathways, and phenotypes as informants of vascular wellness and disease. Arterioscler Thromb Vasc Biol. 2021;41:999–1011. doi: 10.1161/ATVBAHA.120.314647.
  • Gutmann C, Joshi A, Mayr M. Platelet “-omics” in health and cardiovascular disease. Atherosclerosis. 2020;307:87–96. doi: 10.1016/j.atherosclerosis.2020.05.022.
  • Barrachina MN, Hermida-Nogueira L, Moran LA, Casas V, Hicks SM, Sueiro AM, Di Y, Andrews RK, Watson SP, Gardiner EE, et al. Phosphoproteomic analysis of platelets in severe obesity uncovers platelet reactivity and signaling pathways alterations. Arterioscler Thromb Vasc Biol. 2021;41:478–90. doi: 10.1161/ATVBAHA.120.314485.
  • Comer SP, Cullivan S, Szklanna PB, Weiss L, Cullen S, Kelliher S, Smolenski A, Murphy C, Altaie H, Curran J, et al. COVID-19 induces a hyperactive phenotype in circulating platelets. PLoS Biol. 2021;19(2):e3001109. doi: 10.1371/journal.pbio.3001109.
  • Gianazza E, Brioschi M, Baetta R, Mallia A, Banfi C, Tremoli E. Platelets in healthy and disease states: from biomarkers discovery to drug targets Identification by proteomics. Int J Mol Sci. 2020;21(12):4541. doi: 10.3390/ijms21124541.
  • Joshi A, Schmidt LE, Burnap SA, Lu R, Chan MV, Armstrong PC, Baig F, Gutmann C, Willeit P, Santer P, et al. Neutrophil-derived protein S100A8/A9 alters the platelet proteome in acute myocardial infarction and is associated with changes in platelet reactivity. Arterioscler Thromb Vasc Biol. 2022;42(1):49–62. doi: 10.1161/ATVBAHA.121.317113.
  • Babur O, Melrose AR, Cunliffe JM, Klimek J, Pang J, Sepp AI, Zilberman-Rudenko J, Tassi Yunga S, Zheng T, Parra-Izquierdo I, et al. Phosphoproteomic quantitation and causal analysis reveal pathways in GPVI/ITAM-mediated platelet activation programs. Blood. 2020;136(20):2346–58. doi: 10.1182/blood.2020005496.
  • Chatterjee M. Platelet lipidome: dismantling the “Trojan horse” in the bloodstream. J Thromb Haemost. 2020;18(3):543–57. doi: 10.1111/jth.14721.
  • Little A, Hu Y, Sun Q, Jain D, Broome J, Chen MH, Thibord F, McHugh C, Surendran P, Blackwell TW, et al. Whole genome sequence analysis of platelet traits in the NHLBI trans-omics for precision Medicine (TOPMed) initiative. Hum Mol Genet. 2022;31(3):347–61. doi: 10.1093/hmg/ddab252.
  • Zhu W, Gregory JC, Org E, Buffa JA, Gupta N, Wang Z, Li L, Fu X, Wu Y, Mehrabian M, et al. Gut microbial metabolite TMAO enhances platelet hyperreactivity and thrombosis risk. Cell. 2016;165(1):111–24. doi: 10.1016/j.cell.2016.02.011.
  • Davizon-Castillo P, Rowley JW, Rondina MT. Megakaryocyte and platelet transcriptomics for discoveries in human health and disease. Arterioscler Thromb Vasc Biol. 2020;40(6):1432–40. doi: 10.1161/ATVBAHA.119.313280.
  • Nakayasu ES, Gritsenko M, Piehowski PD, Gao Y, Orton DJ, Schepmoes AA, Fillmore TL, Frohnert BI, Rewers M, Krischer JP, et al. Tutorial: best practices and considerations for mass-spectrometry-based protein biomarker discovery and validation. Nat Protoc. 2021;16(8):3737–60. doi: 10.1038/s41596-021-00566-6.
  • Tassi Yunga S, Gower AJ, Melrose AR, Fitzgerald MK, Rajendran A, Lusardi TA, Armstrong RJ, Minnier J, Jordan KR, McCarty OJT, et al. Effects of ex vivo blood anticoagulation and preanalytical processing time on the proteome content of platelets. J Thromb Haemost. 2022;20(6):1437–50. doi: 10.1111/jth.15694.
  • Aslan JE. How can we use proteomics to learn more about platelets? Platelets. 2023;34(1):2217932. doi: 10.1080/09537104.2023.2217932.
  • Anderson L. Candidate-based proteomics in the search for biomarkers of cardiovascular disease. J Physiol. 2005;563(1):23–60. doi: 10.1113/jphysiol.2004.080473.
  • Zellner M. How can platelet proteomics best be used to interrogate disease? Platelets. 2023;34(1):2220046. doi: 10.1080/09537104.2023.2220046.
  • Deutsch EW, Omenn GS, Sun Z, Maes M, Pernemalm M, Palaniappan KK, Letunica N, Vandenbrouck Y, Brun V, Tao SC, et al. Advances and utility of the human plasma proteome. J Proteome Res. 2021;20(12):5241–63. doi: 10.1021/acs.jproteome.1c00657.
  • Bruzek S, Betensky M, Di Paola J, Diacovo T, Goldenberg N, Ignjatovic V. What can the plasma proteome tell us about platelets and (vice versa)? Platelets. 2023;34(1):2186707. doi: 10.1080/09537104.2023.2186707.
  • Geyer PE, Voytik E, Treit PV, Doll S, Kleinhempel A, Niu L, Muller JB, Buchholtz ML, Bader JM, Teupser D, et al. Plasma proteome profiling to detect and avoid sample-related biases in biomarker studies. EMBO Mol Med. 2019;11(11):e10427. doi: 10.15252/emmm.201910427.
  • Mc Ardle A, Binek A, Moradian A, Chazarin Orgel B, Rivas A, Washington KE, Phebus C, Manalo DM, Go J, Venkatraman V, et al. Standardized workflow for precise mid- and high-throughput proteomics of blood biofluids. Clin Chem. 2022;68(3):450–60. doi: 10.1093/clinchem/hvab202.
  • Martinez-Botia P, Villar P, Carbajo-Arguelles G, Jaiteh Z, Acebes-Huerta A, Gutierrez L. Proteomics-wise, how similar are mouse and human platelets? Platelets. 2023;34(1):2220415. doi: 10.1080/09537104.2023.2220415.
  • Huang J, Heemskerk JWM, Swieringa F. Combining human platelet proteomes and transcriptomes: possibilities and challenges. Platelets. 2023;34(1):2224454. doi: 10.1080/09537104.2023.2224454.
  • Allan HE, Vadgama A, Armstrong PC, Warner TD. What can we learn from senescent platelets, their transcriptomes and proteomes? Platelets. 2023;34(1):2200838. doi: 10.1080/09537104.2023.2200838.
  • Chicanne G, Darcourt J, Bertrand-Michel J, Garcia C, Ribes A, Payrastre B. What can we learn from the platelet lipidome? Platelets. 2023;34(1):2182180. doi: 10.1080/09537104.2023.2182180.