271
Views
0
CrossRef citations to date
0
Altmetric
Report

Application of the Cellular Thermal Shift Assay (CETSA) to validate drug target engagement in platelets

&
Article: 2354833 | Received 08 Mar 2024, Accepted 06 May 2024, Published online: 20 May 2024

References

  • Ho-Tin-Noe B, Boulaftali Y, Camerer E. Platelets and vascular integrity: how platelets prevent bleeding in inflammation. Blood. 2018;131(3):277–8. doi:10.1182/blood-2017-06-742676.
  • Patrono C. Role of clinical pharmacology in the development of antiplatelet drugs. Clin Ther. 2014;36(12):2096–111. doi:10.1016/j.clinthera.2014.10.012.
  • Balkenhol J, Kaltdorf KV, Mammadova-Bach E, Braun A, Nieswandt B, Dittrich M, Dandekar T. Comparison of the central human and mouse platelet signaling cascade by systems biological analysis. BMC Genomics. 2020;21(1):897. doi:10.1186/s12864-020-07215-4.
  • Montenont E, Bhatlekar S, Jacob S, Kosaka Y, Manne BK, Lee O, Parra-Izquierdo I, Tugolukova E, Tolley ND, Rondina MT. et al. CRISPR-edited megakaryocytes for rapid screening of platelet gene functions. Blood Adv. 2021;5(9):2362–74. doi:10.1182/bloodadvances.2020004112.
  • Rowlands H, Tschapalda K, Blackett C, Ivanov D, Plant D, Shaw J, Thomas A, Packer M, Arnold L, Holdgate GA. High throughput screening of 0.5 million compounds against CRAF using alpha CETSAⓇ. SLAS Discov. 2023;28(3):102–10. doi:10.1016/j.slasd.2023.01.006.
  • Owens AE, Iannotti MJ, Sanchez TW, Voss T, Kapoor A, Hall MD, Marugan JJ, Michael S, Southall N, Henderson MJ. High-throughput cellular thermal shift assay using acoustic transfer of protein lysates. ACS Chem Biol. 2022;17(2):322–30. doi:10.1021/acschembio.1c00760.
  • Martinez Molina D, Jafari R, Ignatushchenko M, Seki T, Larsson EA, Dan C, Sreekumar L, Cao Y, Nordlund P. Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science. 2013;341(6141):84–7. doi:10.1126/science.1233606.
  • Celej MS, Montich GG, Fidelio GD. Protein stability induced by ligand binding correlates with changes in protein flexibility. Protein Sci. 2003;12(7):1496–506. doi:10.1110/ps.0240003.
  • Henderson MJ, Holbert MA, Simeonov A, Kallal LA. High-throughput cellular thermal shift assays in research and drug discovery. SLAS Discov. 2020;25(2):137–47. doi:10.1177/2472555219877183.
  • Lebraud H, Surova O, Courtin A, O’Reilly M, Valenzano CR, Nordlund P, Heightman TD. Quantitation of ERK1/2 inhibitor cellular target occupancies with a reversible slow off-rate probe. Chem Sci. 2018;9(45):8608–18. doi:10.1039/c8sc02754d.
  • Chen Y, Zhao Y, Bajor DL, Wang Z, Selfridge JE. A facile and sensitive method of quantifying glutaminase binding to its inhibitor CB-839 in tissues. J Genet Genomics. 2020;47(7):389–95. doi:10.1016/j.jgg.2020.06.001.
  • Lim YT, Prabhu N, Dai L, Go KD, Chen D, Sreekumar L, Egeblad L, Eriksson S, Chen L, Veerappan S. et al. An efficient proteome-wide strategy for discovery and characterization of cellular nucleotide-protein interactions. PLOS ONE. 2018;13(12):e0208273. doi:10.1371/journal.pone.0208273.
  • Wei H, Davies JE, Harper MT. 2-aminoethoxydiphenylborate (2-APB) inhibits release of phosphatidylserine-exposing extracellular vesicles from platelets. Cell Death Discov. 2020;6(1):10. doi:10.1038/s41420-020-0244-9.
  • Delport A, Hewer R. A superior loading control for the cellular thermal shift assay. Sci Rep. 2022;12(1):6672. doi:10.1038/s41598-022-10653-7.
  • Sanchez TW, Ronzetti MH, Owens AE, Antony M, Voss T, Wallgren E, Talley D, Balakrishnan K, Leyes Porello SE, Rai G. et al. Real-time cellular thermal shift assay to monitor target engagement. ACS Chem Biol. 2022;17(9):2471–82. doi:10.1021/acschembio.2c00334.
  • White JG. Effects of heat on platelet structure and function. Blood. 1968;32(2):324–35. doi:10.1182/blood.V32.2.324.324.
  • Lee JM, Hammaren HM, Savitski MM, Baek SH. Control of protein stability by post-translational modifications. Nat Commun. 2023;14(1):201. doi:10.1038/s41467-023-35795-8.
  • Potel CM, Kurzawa N, Becher I, Typas A, Mateus A, Savitski MM. Impact of phosphorylation on thermal stability of proteins. Nat Methods. 2021;18(7):757–9. doi:10.1038/s41592-021-01177-5.
  • Kuliopulos A, Mohanlal R, Covic L. Effect of selective inhibition of the p38 MAP kinase pathway on platelet aggregation. Thromb Haemost. 2004;92(12):1387–93. doi:10.1160/TH04-03-0187.
  • Saklatvala J, Rawlinson L, Waller RJ, Sarsfield S, Lee JC, Morton LF, Barnes MJ, Farndale RW. Role for p38 mitogen-activated protein kinase in platelet aggregation caused by collagen or a thromboxane analogue. J Biol Chem. 1996;271(12):6586–9. doi:10.1074/jbc.271.12.6586.
  • Roux PP, Blenis J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol Mol Biol Rev. 2004;68(2):320–44. doi:10.1128/MMBR.68.2.320-344.2004.
  • Vantaggiato C, Formentini I, Bondanza A, Bonini C, Naldini L, Brambilla R. ERK1 and ERK2 mitogen-activated protein kinases affect Ras-dependent cell signaling differentially. J Biol. 2006;5(5):14. doi:10.1186/jbiol38.
  • Huang P, Chu SKS, Frizzo HN, Connolly MP, Caster RW, Siegel JB. Evaluating protein engineering thermostability prediction tools using an independently generated dataset. ACS Omega. 2020;5(12):6487–93. doi:10.1021/acsomega.9b04105.
  • Chen CW, Lin MH, Liao CC, Chang HP, Chu YW. iStable 2.0: predicting protein thermal stability changes by integrating various characteristic modules. Comput Struct Biotechnol J. 2020;18:622–30. doi:10.1016/j.csbj.2020.02.021.
  • Gamage DG, Gunaratne A, Periyannan GR, Russell TG. Applicability of instability index for in vitro protein stability prediction. Protein Pept Lett. 2019;26(5):339–47. doi:10.2174/0929866526666190228144219.
  • Moelbert S, Emberly E, Tang C. Correlation between sequence hydrophobicity and surface-exposure pattern of database proteins. Protein Sci. 2004;13(3):752–62. doi:10.1110/ps.03431704.
  • Mozo-Villarias A, Cedano J, Querol E. Hydrophobicity density profiles to predict thermal stability enhancement in proteins. Protein J. 2006;25(7–8):529–35. doi:10.1007/s10930-006-9039-y.