288
Views
0
CrossRef citations to date
0
Altmetric
Articles

A unified dynamic neural field model of goal directed eye movements

ORCID Icon & ORCID Icon
Pages 20-52 | Received 01 Nov 2016, Accepted 16 May 2017, Published online: 30 Jan 2018

References

  • Amari, S.-I. (1977). Dynamics of pattern formation in lateral-inhibition type neural fields. Biological Cybernetics, 27(2), 77–87. doi: 10.1007/BF00337259
  • Astefanoaei, C., Creanga, D., Pretegiani, E., Optican, L., & Rufa, A. (2014). Dynamical complexity analysis of saccadic eye movements in two different psychological conditions. Romanian Reports in Physics, 66(4), 1038.
  • Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Sciences, 11(7), 280–289. doi: 10.1016/j.tics.2007.05.005
  • Barandiaran, X. E. (2016). Autonomy and enactivism: Towards a theory of sensorimotor autonomous agency. Topoi, 1–22.
  • Bell, C., Storck, T., & Sandamirskaya, Y. (2014). Learning to look: A dynamic neural fields architecture for gaze shift generation. In S. Wermter, C. Weber, W. Duch, T. Honkela, P. Koprinkova-Hristova, S. Magg, … A. E. P. Villa (Eds.), Artificial neural networks and machine earning – ICANN 2014, Lecture Notes in Computer Science (Vol. 8681, pp. 699–706). Cham: Springer.
  • Bickhard, M. H. (1999). Interaction and representation. Theory & Psychology, 9(4), 435–458. doi: 10.1177/0959354399094001
  • Bourrelly, C., Quinet, J., Cavanagh, P., & Goffart, L. (2016). Learning the trajectory of a moving visual target and evolution of its tracking in the monkey. Journal of Neurophysiology, 116(6), 2739–2751. doi: 10.1152/jn.00519.2016
  • Bourrelly, C., Quinet, J., & Goffart, L. (2013). Equilibria and transitions during visual tracking: Learning to track a moving visual target in the monkey. In Society for neuroscience abstracts (p. 363.01). Society for Neuroscience.
  • Bourrelly, C., Quinet, J., & Goffart, L. (2014). Unsupervised dynamic morphing of a spatiotemporal visual event during its oculomotor tracking. Journal of Vision, 14(10), 492. doi: 10.1167/14.10.492
  • Bourrelly, C., Quinet, J., & Goffart, L. (2015). Evolution of the oculomotor tracking with an accelerating or decelerating target. Journal of Vision, 15(12), 1016. doi: 10.1167/15.12.1016
  • Brooks, R. A. (1995). Intelligence without reason. In L. Steels & R. Brooks (Eds.), The artificial life route to artificial intelligence: Building embodied, situated agents (pp. 25–84). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Bubic, A., Von Cramon, D. Y., & Schubotz, R. I. (2010). Prediction, cognition and the brain. Frontiers in Human Neuroscience, 4, 25.
  • Buisson, J.-C., & Quinton, J.-C. (2010). Internalized activities. New Ideas in Psychology, 28(3), 312–323. doi: 10.1016/j.newideapsych.2009.09.006
  • Catenacci, N., Quinton, J.-C., & Pezzulo, G. (2014). How active perception and attractor dynamics shape perceptual categorization: A computational model. Neural Networks, 60, 1–16. doi: 10.1016/j.neunet.2014.06.008
  • Cerda, M., & Girau, B. (2010). Bio-inspired visual sequences classification. In Brain inspired cognitive systems (BICS) (p. 20). Madrid, Spain.
  • Daye, P. M., Blohm, G., & Lefèvre, P. (2014). Catch-up saccades in head-unrestrained conditions reveal that saccade amplitude is corrected using an internal model of target movement. Journal of Vision, 14(1), 12–12. doi: 10.1167/14.1.12
  • Fix, J., Rougier, N., & Alexandre, F. (2011). A dynamic neural field approach to the covert and overt deployment of spatial attention. Cognitive Computation, 3(1), 279–293. doi: 10.1007/s12559-010-9083-y
  • Franceschini, N., Chagneux, R., Kirschfeldand, K., & Mücke, A. (1991). Vergence eye movements in flies ( Gottingen neurobiology report, Vol. 1, p. 275). Göttingen: Thieme.
  • Gandhi, N. J., & Katnani, H. A. (2011). Motor functions of the superior colliculus. Annual Review of Neuroscience, 34, 205–231. doi: 10.1146/annurev-neuro-061010-113728
  • Gepperth, A. (2014). Processing and transmission of confidence in recurrent neural hierarchies. Neural Processing Letters, 40(1), 75–91. doi: 10.1007/s11063-013-9311-z
  • Goffart, L., Hafed, Z. M., & Krauzlis, R. J. (2012). Visual fixation as equilibrium: Evidence from superior colliculus inactivation. The Journal of Neuroscience, 32(31), 10627–10636. doi: 10.1523/JNEUROSCI.0696-12.2012
  • Hafed, Z. M., Goffart, L., & Krauzlis, R. J. (2009). A neural mechanism for microsaccade generation in the primate superior colliculus. Science, 323(5916), 940–943. doi: 10.1126/science.1166112
  • Hicheur, H., Zozor, S., Campagne, A., & Chauvin, A. (2013). Microsaccades are modulated by both attentional demands of a visual discrimination task and background noise. Journal of Vision, 13(13), 18–18. doi: 10.1167/13.13.18
  • Hopfinger, J. B., Buonocore, M. H., & Mangun, G. R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284–291. doi: 10.1038/72999
  • Hubel, D. H., & Wiesel, T. N. (1962). Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. The Journal of Physiology, 160(1), 106–154. doi: 10.1113/jphysiol.1962.sp006837
  • Itti, L., & Koch, C. (2001). Computational modelling of visual attention. Nature Reviews Neuroscience, 2(3), 194–203. doi: 10.1038/35058500
  • Itti, L., Koch, C., Niebur, E. (1998). A model of saliency-based visual attention for rapid scene analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(11), 1254–1259. doi: 10.1109/34.730558
  • James, W. (1890). The principles of psychology. New York, NY: Dover (1957).
  • Kietzmann, T. C., Geuter, S., & König, P. (2011). Overt visual attention as a causal factor of perceptual awareness. PloS One, 6(7), e22614. doi: 10.1371/journal.pone.0022614
  • Ko, H.-K., Poletti, M., & Rucci, M. (2010). Microsaccades precisely relocate gaze in a high visual acuity task. Nature Neuroscience, 13(12), 1549–1553. doi: 10.1038/nn.2663
  • Kopecz, K., & Schöner, G. (1995). Saccadic motor planning by integrating visual information and pre-information on neural dynamic fields. Biological Cybernetics, 73(1), 49–60. doi: 10.1007/BF00199055
  • Krauzlis, R. J., Goffart, L., & Hafed, Z. M. (2017). Neuronal control of fixation and fixational eye movements. Philosophical Transactions of the Royal Society, 372(1718), 20160205. doi: 10.1098/rstb.2016.0205
  • Lefort, M., Boniface, Y., & Girau, B. (2011). Coupling BCM and neural fields for the emergence of self-organization consensus. In C. Hernandez, R. Sanz, J. Gomez-Ramirez, L. S. Smith, A. Hussain, A. Chella, I. Aleksander (Eds.), From brains to systems. Advances in experimental medicine and biology (vol. 718, pp. 41–56). New York, NY: Springer.
  • Maggiani, L., Bourrasset, C., Quinton, J.-C., Berry, F., & Sérot, J. (2016). Bio-inspired heterogeneous architecture for real-time pedestrian detection applications. Journal of Real-Time Image Processing, 1–14. Retrieved from https://link.springer.com/article/10.1007/s11554-016-0581-3
  • Milton, J., Insperger, T., & Stepan, G. (2015). Human balance control: Dead zones, intermittency, and micro-chaos. In Ohira T., Uzawa T. (Eds.), Mathematical approaches to biological Systems (pp. 1–28). Tokyo: Springer.
  • O'Regan, J. K., & Noë, A. (2001). A sensorimotor account of vision and visual consciousness. Behavioral and Brain Sciences, 24(05), 939–973. doi: 10.1017/S0140525X01000115
  • Otero-Millan, J., Troncoso, X. G., Macknik, S. L., Serrano-Pedraza, I., & Martinez-Conde, S. (2008). Saccades and microsaccades during visual fixation, exploration, and search: Foundations for a common saccadic generator. Journal of Vision, 8(14), 21–21. doi: 10.1167/8.14.21
  • Pezzulo, G. (2008). Coordinating with the future: The anticipatory nature of representation. Minds and Machines, 18(2), 179–225. doi: 10.1007/s11023-008-9095-5
  • Piaget, J. (1967). The child's conception of space. Norton.
  • Poincaré, H. (1914). Science and method. London: Thomas Nelson and Sons.
  • Quinet, J., & Goffart, L. (2015). Does the brain extrapolate the position of a transient moving target? The Journal of Neuroscience, 35(34), 11780–11790. doi: 10.1523/JNEUROSCI.1212-15.2015
  • Quinton, J.-C. (2010). Exploring and optimizing dynamic neural fields parameters using genetic algorithms. International joint conference on neural networks (IJCNN), IEEE, Barcelona (Spain).
  • Quinton, J.-C., Catenacci, N. C., Barca, L., & Pezzulo, G. (2014). The cat is on the mat. Or is it a dog? Dynamic competition in perceptual decision making. IEEE Transactions on Systems, Man and Cybernetics: Systems, 44, 539–551. doi: 10.1109/TSMC.2013.2279664
  • Quinton, J.-C., & Girau, B. (2011). Predictive neural fields for improved tracking and attentional properties. In International joint conference on neural networks (IJCNN) (pp. 1629–1636). San José, CA: IEEE.
  • Quinton, J.-C., & Girau, B. (2012). Spatiotemporal pattern discrimination using predictive dynamic neural fields. In Twenty first annual computational neuroscience meeting (CNS) (Vol. 13, p. 1). Atlanta, GA: BioMed Central.
  • Rolfs, M. (2009). Microsaccades: Small steps on a long way. Vision Research, 49(20), 2415–2441. doi: 10.1016/j.visres.2009.08.010
  • Rolfs, M. (2015). Attention in active vision: A perspective on perceptual continuity across saccades. Perception, 44(8–9), 900–919. doi: 10.1177/0301006615594965
  • Rosenbaum, D. A., Chapman, K. M., Weigelt, M., Weiss, D. J., & van der Wel, R. (2012). Cognition, action, and object manipulation. Psychological Bulletin, 138(5), 924– 946. doi: 10.1037/a0027839
  • Rougier, N. P., & Vitay, J. (2006). Emergence of attention within a neural population. Neural Network, 19(5), 573–581. doi: 10.1016/j.neunet.2005.04.004
  • Sandamirskaya, Y. (2014). Dynamic neural fields as a step toward cognitive neuromorphic architectures. Frontiers in Neuroscience, 7, 276. doi: 10.3389/fnins.2013.00276
  • Sandamirskaya, Y., & Schöner, G. (2010). An embodied account of serial order: How instabilities drive sequence generation. Neural Networks, 23(10), 1164–1179. doi: 10.1016/j.neunet.2010.07.012
  • Schneegans, S., Spencer, J. P., Schöner, G., Hwang, S., & Hollingworth, A. (2014). Dynamic interactions between visual working memory and saccade target selection. Journal of Vision, 14(11), 9–9. doi: 10.1167/14.11.9
  • Schöner, G. (2008). Dynamical systems approaches to cognition. In R. Sun (Ed.), Cambridge handbook of computational cognitive modeling (pp. 101–126). Cambridge University Press.
  • Schöner, G., & Spencer, J. (2015). Dynamic thinking: A primer on dynamic field theory. New York, NY: Oxford University Press.
  • Taouali, W., Goffart, L., Alexandre, F., & Rougier, N. P. (2015). A parsimonious computational model of visual target position encoding in the superior colliculus. Biological Cybernetics, 109(4–5), 549–559. doi: 10.1007/s00422-015-0660-8
  • Taylor, J. G. (1999). Neural bubble dynamics in two dimensions: Foundations. Biological Cybernetics, 80, 393–409. doi: 10.1007/s004220050534
  • von Uexküll, Jakob (1909). Umwelt und Innenwelt der Tiere [Environment and inner world of the animal]. Berlin: Julius Springer.
  • Viollet, S. (2014). Vibrating makes for better seeing: From the fly's micro-eye movements to hyperacute visual sensors. Frontiers in Bioengineering and Biotechnology, 2, 9. doi: 10.3389/fbioe.2014.00009
  • Wilson, H. R., & Cowan, J. D. (1973). A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik, 13(2), 55–80. doi: 10.1007/BF00288786
  • Zhang, K., & Sejnowski, T. J. (1999). Neuronal tuning: To sharpen or broaden? Neural Computation, 11(1), 75–84. doi: 10.1162/089976699300016809

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.