1,051
Views
3
CrossRef citations to date
0
Altmetric
Articles

Feature recommendation strategy for graph convolutional network

ORCID Icon, , &
Pages 1697-1718 | Received 18 Mar 2022, Accepted 17 May 2022, Published online: 14 Jun 2022

References

  • Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In Advances in neural information processing systems (Vol. 29). Curran Associates, Inc.
  • Berg, R. V. D., Kipf, T. N., & Welling, M. (2017). Graph convolutional matrix completion. arXiv preprint arXiv:1706.02263. https://doi.org/10.48550/arXiv.1706.02263
  • Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., & Huang, J. (2020). Rumor detection on social media with bi-directional graph convolutional networks. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 549–556. https://doi.org/10.1609/aaai.v34i01.5393
  • Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203. https://doi.org/10.48550/arXiv.1312.6203
  • Chang, F., Ge, L., Li, S., Wu, K., & Wang, Y. (2021). Self-adaptive spatial-temporal network based on heterogeneous data for air quality prediction. Connection Science, 33(3), 427–446. https://doi.org/10.1080/09540091.2020.1841095
  • Chen, J., Pan, L., Wei, Z., Wang, X., Ngo, C. W., & Chua, T. S. (2020). Zero-shot ingredient recognition by multi-relational graph convolutional network. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7), 10542–10550. https://doi.org/10.1609/aaai.v34i07.6626
  • Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional networks. In International conference on machine learning (pp. 1725–1735). PMLR.
  • Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in neural information processing systems. (Vol. 29).Curran Associates, Inc.
  • Donnat, C., Zitnik, M., Hallac, D., & Leskovec, J. (2018). Learning structural node embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining. Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3219819.3220025.
  • Duan, Y., Wang, J., Ma, H., & Sun, Y. (2021). Residual convolutional graph neural network with subgraph attention pooling. Tsinghua Science and Technology, 27(4), 653–663. https://doi.org/10.26599/TST.2021.9010058
  • Fan, W., Ma, Y., Li, Q., He, Y., Zhao, E., Tang, J., & Yin, D. (2019). Graph neural networks for social recommendation. In The world wide web conference (pp. 417–426)., Association for Computing Machinery, New York, NY, United States.  https://doi.org/10.1145/3308558.3313488.
  • Feng, F., He, X., Zhang, H., & Chua, T. S. (2021). Cross-GCN: Enhancing graph convolutional network with k-Order feature interactions. IEEE Transactions on Knowledge and Data Engineering, pp. 1–1. https://doi.org/10.1109/TKDE.2021.3077524.
  • Gao, J., Liu, X., Chen, Y., & Xiong, F. (2021). MHGCN: Multiview highway graph convolutional network for cross-lingual entity alignment. Tsinghua Science and Technology, 27(4), 719–728. https://doi.org/10.26599/TST.2021.9010056
  • Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: An automatic citation indexing system. In Proceedings of the third ACM conference on digital libraries (pp. 89–98), ACM. https://doi.org/10.1145/276675.276685.
  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. In International conference on machine learning (pp. 1263–1272). PMLR.
  • Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (Vol. 30). Curran Associates, Inc.
  • Hammond, D. K., Vandergheynst, P., & Gribonval, R. (2011). Wavelets on graphs via spectral graph theory. Applied and Computational Harmonic Analysis, 30(2), 129–150. https://doi.org/10.1016/j.acha.2010.04.005
  • Hu, J., Wang, Z., Chen, J., & Dai, Y. (2021). A community partitioning algorithm based on network enhancement. Connection Science, 33(1), 42–61. https://doi.org/10.1080/09540091.2020.1753172
  • Hu, N., Zhang, D., Xie, K., Liang, W., & Hsieh, M. Y. (2021). Graph learning-based spatial-temporal graph convolutional neural networks for traffic forecasting. Connection Science, 34(1), 429–448. https://doi.org/10.1080/09540091.2021.2006607.
  • Huang, L., Huang, Y., Ouyang, W., & Wang, L. (2020). Part-level graph convolutional network for skeleton-based action recognition. Proceedings of the AAAI Conference on Artificial Intelligence, 34(7), 11045–11052. https://doi.org/10.1609/aaai.v34i07.6759
  • Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980. https://doi.org/10.48550/arXiv.1412.6980
  • Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907. https://doi.org/10.48550/arXiv.1609.02907
  • Levie, R., Monti, F., Bresson, X., & Bronstein, M. M. (2018). Cayleynets: Graph convolutional neural networks with complex rational spectral filters. IEEE Transactions on Signal Processing, 67(1), 97–109. https://doi.org/10.1109/TSP.2018.2879624
  • Lian, S., & Tang, M. (2022). API recommendation for Mashup creation based on neural graph collaborative filtering. Connection Science, 34(1), 124–138. https://doi.org/10.1080/09540091.2021.1974819
  • Liao, R., Zhao, Z., Urtasun, R., & Zemel, R. S. (2019). Lanczosnet: Multi-scale deep graph convolutional networks. arXiv preprint arXiv:1901.01484. https://doi.org/10.48550/arXiv.1901.01484
  • Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338–348), Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3394486.3403076.
  • Liu, M., Wang, Z., & Ji, S. (2021). Non-local graph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, pp. 1–1. https://doi.org/10.1109/TPAMI.2021.3134200.
  • McCallum, A. K., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of internet portals with machine learning. Information Retrieval, 3(2), 127–163. https://doi.org/10.1023/A:1009953814988
  • Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learning on graphs and manifolds using mixture model CNNs. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5115–5124). IEEE.
  • Perozzi, B., Al-Rfou, R., & Skiena, S. (2014). Deepwalk: Online learning of social representations. In Proceedings of the 20th ACM SIGKDD international conference on knowledge discovery and data mining (pp. 701–710), Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/2623330.2623732.
  • Qin, J., Zeng, X., Wu, S., & Tang, E. (2021). E-GCN: Graph convolution with estimated labels. Applied Intelligence, 51(7), 5007–5015. https://doi.org/10.1007/s10489-020-02093-5
  • Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–93. https://doi.org/10.1609/aimag.v29i3.2157
  • Shang, C., Tang, Y., Huang, J., Bi, J., He, X., & Zhou, B. (2019). End-to-end structure-aware convolutional networks for knowledge base completion. Proceedings of the AAAI Conference on Artificial Intelligence, 33(1), 3060–3067. https://doi.org/10.1609/aaai.v33i01.33013060
  • Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A simple way to prevent neural networks from overfitting. The Journal of Machine Learning Research, 15(1), 1929–1958.
  • Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903. https://doi.org/10.48550/arXiv.1710.10903
  • Wang, L., Chen, J., Chen, Z., Liu, Y., & Yang, H. (2022). Multi-stream part-fused graph convolutional networks for skeleton-based gait recognition. Connection Science, 34(1), 1252–1272. https://doi.org/10.1080/09540091.2022.2026294.
  • Wang, X., Ji, H., Shi, C., Wang, B., Ye, Y., Cui, P., & Yu, P. S. (2019). Heterogeneous graph attention network. In The world wide web conference (pp. 2022–2032), Association for Computing Machinery, New York, NY, United States.  https://doi.org/10.1145/3308558.3313562.
  • Wang, X., Liu, N., Han, H., & Shi, C. (2021). Self-supervised heterogeneous graph neural network with co-contrastive learning. In Proceedings of the 27th ACM SIGKDD conference on knowledge discovery & data mining (pp. 1726–1736), Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3447548.3467415.
  • Weston, J., Ratle, F., Mobahi, H., & Collobert, R. (2012). Deep learning via semi-supervised embedding. In Neural networks: Tricks of the trade (pp. 639–655). Springer. https://doi.org/10.1007/978-3-642-35289-8_34
  • Wu, Y., Lian, D., Xu, Y., Wu, L., & Chen, E. (2020). Graph convolutional networks with markov random field reasoning for social spammer detection. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 1054–1061. https://doi.org/10.1609/aaai.v34i01.5455
  • Xu, K., Hu, W., Leskovec, J., & Jegelka, S. (2018). How powerful are graph neural networks? arXiv preprint arXiv:1810.00826. https://doi.org/10.48550/arXiv.1810.00826
  • Yang, L., Kang, Z., Cao, X., Jin, D., Yang, B., & Guo, Y. (2019). Topology optimization based graph convolutional network. In IJCAI. (pp. 4054–4061). AAAI, Press.
  • Yang, X., Deng, C., Dang, Z., Wei, K., & Yan, J. (2021). SelfSAGCN: Self-supervised semantic alignment for graph convolution network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16775–16784). IEEE.
  • Zhang, C., Song, D., Huang, C., Swami, A., & Chawla, N. V. (2019). Heterogeneous graph neural network. In Proceedings of the 25th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 793–803), Association for Computing Machinery, New York, NY, United States. https://doi.org/10.1145/3292500.3330961.
  • Zhao, C., Li, X., Shao, Z., Yang, H., & Wang, F. (2022). Multi-featured spatial-temporal and dynamic multi-graph convolutional network for metro passenger flow prediction. Connection Science, 34(1), 1252–1272. https://doi.org/10.1080/09540091.2022.2061915
  • Zhao, X., Wang, Z., Gao, L., Li, Y., & Wang, S. (2021). Incremental face clustering with optimal summary learning via graph convolutional network. Tsinghua Science and Technology, 26(4), 536–547. https://doi.org/10.1109/TST.5971803
  • Zheng, C., Fan, X., Wang, C., & Qi, J. (2020). Gman: A graph multi-attention network for traffic prediction. Proceedings of the AAAI Conference on Artificial Intelligence, 34(1), 1234–1241. https://doi.org/10.1609/aaai.v34i01.5477
  • Zhu, Q., Du, B., & Yan, P. (2020). Self-supervised training of graph convolutional networks. arXiv preprint arXiv:2006.02380. https://doi.org/10.48550/arXiv.2006.02380