629
Views
0
CrossRef citations to date
0
Altmetric
Articles

Structural reinforcement-based graph convolutional networks

ORCID Icon, &
Pages 2807-2821 | Received 29 Aug 2022, Accepted 19 Nov 2022, Published online: 12 Dec 2022

References

  • Atwood, J., & Towsley, D. (2016). Diffusion-convolutional neural networks. In Advances in neural information processing systems (p. 29). Curran Associates, Inc.
  • Bian, T., Xiao, X., Xu, T., Zhao, P., Huang, W., Rong, Y., & Huang, J. (2020). Rumor detection on social media with bi-directional graph convolutional networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, No. 01, pp. 549–556). AAAI Press. https://doi.org/10.1609/aaai.v34i01.5393.
  • Bruna, J., Zaremba, W., Szlam, A., & LeCun, Y. (2013). Spectral networks and locally connected networks on graphs. arXiv preprint arXiv:1312.6203.
  • Chen, G., & Zhang, J. (2022). Preventing over-smoothing for hypergraph neural networks. arXiv preprint arXiv:2203.17159.
  • Chen, M., Wei, Z., Huang, Z., Ding, B., & Li, Y. (2020). Simple and deep graph convolutional networks. In International conference on machine learning (pp. 1725–1735). PMLR.
  • Defferrard, M., Bresson, X., & Vandergheynst, P. (2016). Convolutional neural networks on graphs with fast localized spectral filtering. In Advances in neural information processing systems (p. 29). Curran Associates, Inc.
  • Donnat, C., Zitnik, M., Hallac, D., & Leskovec, J. (2018). Learning structural node embeddings via diffusion wavelets. In Proceedings of the 24th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 1320–1329). Association for Computing Machinery. https://doi.org/10.1145/3219819.3220025.
  • Feng, F., He, X., Zhang, H., & Chua, T. S. (2021). Cross-GCN: enhancing graph convolutional network with k-order feature interactions. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2021.3077524.
  • Giles, C. L., Bollacker, K. D., & Lawrence, S. (1998). CiteSeer: an automatic citation indexing system. In Proceedings of the third ACM conference on digital libraries (pp. 89–98). Association for Computing Machinery.
  • Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural message passing for quantum chemistry. In International conference on machine learning (pp. 1263–1272). PMLR.
  • Hamilton, W., Ying, Z., & Leskovec, J. (2017). Inductive representation learning on large graphs. In Advances in neural information processing systems (p. 30). Curran Associates, Inc.
  • Hu, J., Guo, C., Yang, B., & Jensen, C. S. (2019). Stochastic weight completion for road networks using graph convolutional networks. In 2019 IEEE 35th international conference on data engineering (ICDE) (pp. 1274–1285). IEEE. https://doi.org/10.1109/ICDE.2019.00116.
  • Jo, J., Baek, J., Lee, S., Kim, D., Kang, M., & Hwang, S. J. (2021). Edge representation learning with hypergraphs. Advances in Neural Information Processing Systems, 34, 7534–7546.
  • Kingma, D. P., & Ba, J. (2014). Adam: a method for stochastic optimisation. arXiv preprint arXiv:1412.6980.
  • Kipf, T. N., & Welling, M. (2016). Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907.
  • Klicpera, J., Bojchevski, A., & Günnemann, S. (2018). Predict then propagate: graph neural networks meet personalised pagerank. arXiv preprint arXiv:1810.05997.
  • Klicpera, J., Weißenberger, S., & Günnemann, S. (2019). Diffusion improves graph learning. arXiv preprint arXiv:1911.05485.
  • Li, G., Muller, M., Thabet, A., & Ghanem, B. (2019). Deepgcns: can gcns go as deep as cnns? In Proceedings of the IEEE/CVF international conference on computer vision (pp. 9267–9276). IEEE.
  • Li, Q., Han, Z., & Wu, X. M. (2018). Deeper insights into graph convolutional networks for semi-supervised learning. In Thirty-Second AAAI conference on artificial intelligence. AAAI Press.
  • Li, Q., Wu, X. M., Liu, H., Zhang, X., & Guan, Z. (2019). Label efficient semi-supervised learning via graph filtering. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 9582–9591). IEEE.
  • Lin, W., Gao, Z., & Li, B. (2020). Shoestring: graph-based semi-supervised classification with severely limited labeled data. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 4174–4182). IEEE.
  • Liu, M., Gao, H., & Ji, S. (2020). Towards deeper graph neural networks. In Proceedings of the 26th ACM SIGKDD international conference on knowledge discovery & data mining (pp. 338–348). Association for Computing Machinery. https://doi.org/10.1145/3394486.3403076.
  • Liu, M., Wang, Z., & Ji, S. (2021). Non-local graph neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(12), 10270–10276. https://doi.org/10.1109/TPAMI.2021.3134200
  • McCallum, A. K., Nigam, K., Rennie, J., & Seymore, K. (2000). Automating the construction of internet portals with machine learning. Information Retrieval, 3(2), 127–163. https://doi.org/10.1023/A:1009953814988
  • Mishra, P., Del Tredici, M., Yannakoudakis, H., & Shutova, E. (2019). Abusive language detection with graph convolutional networks. arXiv preprint arXiv:1904.04073. https://doi.org/10.48550/arXiv.1904.04073.
  • Monti, F., Boscaini, D., Masci, J., Rodola, E., Svoboda, J., & Bronstein, M. M. (2017). Geometric deep learning on graphs and manifolds using mixture model cnns. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 5115–5124). IEEE.
  • Pei, H., Wei, B., Chang, K. C. C., Lei, Y., & Yang, B. (2020). Geom-gcn: geometric graph convolutional networks. arXiv preprint arXiv:2002.05287.
  • Qin, J., Zeng, X., Wu, S., & Tang, E. (2021). E-GCN: graph convolution with estimated labels. Applied Intelligence, 51(7), 5007–5015. https://doi.org/10.1007/s10489-020-02093-5
  • Qin, J., Zeng, X., Wu, S., & Zou, Y. (2022). Feature recommendation strategy for graph convolutional network. Connection Science, 34(1), 1697–1718. https://doi.org/10.1080/09540091.2022.2080806
  • Qin, J., Zeng, X., Wu, S., & Zou, Y. (2022). Multi-Semantic Alignment Graph Convolutional Network. Connection Science, 34(1), 2313–2331. https://doi.org/10.1080/09540091.2022.2115010
  • Rong, Y., Huang, W., Xu, T., & Huang, J. (2019). Dropedge: towards deep graph convolutional networks on node classification. arXiv preprint arXiv:1907.10903.
  • Sen, P., Namata, G., Bilgic, M., Getoor, L., Galligher, B., & Eliassi-Rad, T. (2008). Collective classification in network data. AI Magazine, 29(3), 93–93. https://doi.org/10.1609/aimag.v29i3.2157
  • Shang, C., Tang, Y., Huang, J., Bi, J., He, X., & Zhou, B. (2019). End-to-end structure-aware convolutional networks for knowledge base completion. In Proceedings of the AAAI conference on artificial intelligence (Vol. 33, No. 01, pp. 3060–3067). AAAI Press. https://doi.org/10.1609/aaai.v33i01.33013060.
  • Tan, Z., Yang, Y., Wan, J., Guo, G., & Li, S. Z. (2020). Relation-aware pedestrian attribute recognition with graph convolutional networks. In Proceedings of the AAAI conference on artificial intelligence (Vol. 34, pp. 12055–12062). AAAI Press. https://doi.org/10.1609/aaai.v34i07.6883.
  • Van der Maaten, L., & Hinton, G. (2008). Visualizing data using t-SNE. Journal of Machine Learning Research, 9(11), 2579–2605.
  • Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., & Bengio, Y. (2017). Graph attention networks. arXiv preprint arXiv:1710.10903.
  • Wu, F., Souza, A., Zhang, T., Fifty, C., Yu, T., & Weinberger, K. (2019). Simplifying graph convolutional networks. In International conference on machine learning (pp. 6861–6871). PMLR.
  • Xia, L., Huang, C., Xu, Y., Zhao, J., Yin, D., & Huang, J. (2022). Hypergraph contrastive collaborative filtering. In Proceedings of the 45th International ACM SIGIR conference on research and development in information retrieval (pp. 70–79). https://doi.org/10.1145/3477495.3532058.
  • Xu, K., Li, C., Tian, Y., Sonobe, T., Kawarabayashi, K. I., & Jegelka, S. (2018). Representation learning on graphs with jumping knowledge networks. In International conference on machine learning (pp. 5453–5462). PMLR.
  • Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K. I., & Jegelka, S. (2019). What can neural networks reason about? arXiv preprint arXiv:1905.13211.
  • Yang, L., Kang, Z., Cao, X., Jin, D., Yang, B., & Guo, Y. (2019). Topology optimisation based graph convolutional network. In IJCAI (pp. 4054–4061). AAAI Press.
  • Yang, X., Deng, C., Dang, Z., Wei, K., & Yan, J. (2021). SelfSAGCN: self-supervised semantic alignment for graph convolution network. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (pp. 16775–16784). IEEE.
  • Zhang, J., Shi, X., Xie, J., Ma, H., King, I., & Yeung, D. Y. (2018). Gaan: gated attention networks for learning on large and spatiotemporal graphs. arXiv preprint arXiv:1803.07294.