870
Views
4
CrossRef citations to date
0
Altmetric
Articles

Immunochemical evaluation of proteolysis of cereal proteins causing celiac disease by microbial proteases

, &
Pages 743-757 | Received 25 Sep 2015, Accepted 27 Jan 2016, Published online: 25 Feb 2016

References

  • Ballabio, C., Uberti, F., Manferdelli, S., Vacca, E., Boggini, G., Redaelli, R., … Restani, P. (2011). Molecular characterisation of 36 oat varieties and in vitro assessment of their suitability for coeliacs’ diet. Journal of Cereal Science, 54, 110–115. doi: 10.1016/j.jcs.2011.04.004
  • Cavazos, A., & de Mejia, E. G. (2013). Identification of bioactive peptides from cereal storage proteins and their potential role in prevention of chronic diseases. Comprehensive Reviews in Food Sciences and Food Safety, 12, 364–380. doi: 10.1111/1541-4337.12017
  • Chen, Y.-S., Christensen, J. E., Broadbent, J. R., & Steele, J. L. (2003). Identification and characterization of Lactobacillus helveticus PepO2, an endopeptidase with post-proline specificity. Applied and Environmental Microbiology, 69, 1276–1282. doi: 10.1128/AEM.69.2.1276-1282.2003
  • Di Cagno, R., De Angelis, M., Auricchio, S., Greco, L., Clarke, C., De Vincenzi, M., … Gobetti, M. (2004). Sourdough bread made from wheat and nontoxic flours and started with selected lactobacilli is tolerated in celiac sprue patients. Applied and Environmental Microbiology, 70, 1088–1096. doi: 10.1128/AEM.70.2.1088-1096.2004
  • Di Cagno, R., De Angelis, M., Lavermicocca, P., De Vincenzi, M., Giovannini, C., Faccia, M., & Gobetti, M. (2002). Proteolysis by sourdough lactic acid bacteria: Effects on wheat flour protein fractions and gliadin peptides involved in human cereal intolerance. Applied and Environmental Microbiology, 68, 623–633. doi: 10.1128/AEM.68.2.623-633.2002
  • Doi, Y., Akiyama, H., Yamada, Y., Ee, C. H. E., Lee, B. R., Ikeguchi, M., & Ichishima, E. (2004). Thermal stabilization of penicillolysin, a thermo-labile 19 kDa Zn2+-protease, obtained by site-directed mutagenesis. Protein Engineering Design and Selection, 17, 261–266. doi: 10.1093/protein/gzh034
  • van Eckert, R., Bond, J., Rawson, P., Klein, C. L., Stern, M., & Jordan, T. W. (2010). Reactivity of gluten detecting monoclonal antibodies to a gliadin reference material. Journal of Cereal Science, 51, 198–204. doi: 10.1016/j.jcs.2009.11.012
  • Ehren, J., Morón, B., Martin, E., Bethune, M. T., Gray, G. M., & Khosla, C. (2009). A food-grade enzyme preparation with modest gluten detoxification properties. PLoS ONE, 4, e6313. doi: 10.1371/journal.pone.0006313
  • Ellis, H. J., Rosen-Bronson, S., O'Reilly, N., & Ciclitra, P. J. (1998). Measurement of gluten using a monoclonal antibody to a coeliac toxic peptide of a gliadin. Gut, 43, 190–195. doi: 10.1136/gut.43.2.190
  • Gobetti, M., Rizello, C. G., Di Cagno, R., & De Angelis, M. (2007). Sourdough lactobacilli and celiac disease. Food Microbiology, 24, 187–196. doi: 10.1016/j.fm.2006.07.014
  • Greco, L., Gobetti, M., Auricchio, R., Di Mase, R., Landolfo, F., Paparo, F., … Aurichio, S. (2011). Safety for patients with celiac disease of baked goods made of wheat flour hydrolyzed during food processing. Clinical Gastroenterology and Hepatology, 9, 24–29. doi: 10.1016/j.cgh.2010.09.025
  • Gregorini, A., Colomba, M., Ellis, H. J., & Cicltira, P. J. (2009). Immunogenicity characterization of two ancient wheat α-gliadin peptides related to coeliac disease. Nutrients, 1, 276–290. doi: 10.3390/nu1020276
  • Halbmayr-Jech, E., Hammer, E., Fiedler, R., Coutts, J., Rogers, A., & Cornish, M. (2012). Characterization of G12 sandwich ELISA, a next-generation immunoassay fot gluten toxicity. Journal of AOAC International, 95, 372–376. doi: 10.5740/jaoacint.SGE_Halbmayr-Jech
  • Hammer, E. (2012). Gluten-free—How can you prove it? International Food Hygiene, 23, 9–10.
  • Kanerva, P., Sontag-Strohm, T. S., Ryöppy, P. H., Alho-Lehto, P., & Salovaara, H. O. (2006). Analysis of barley contamination in oats using R5 and ω-gliadin antibodies. Journal of Cereal Science, 44, 347–352. doi: 10.1016/j.jcs.2006.08.005
  • Londono, D. M., van't Westende, W. P. C., Goryunova, S., Salentijn, E. M. J., van den Broeck, H. C., van der Meer, I. M., … Smulders, M. J. M. (2013). Avenin diversity analysis of the genus Avena (oat). Relevance for people with celiac disease. Journal of Cereal Science, 58, 170–177. doi: 10.1016/j.jcs.2013.03.017
  • Makharia, G. K. (2014). Current and emerging therapy for celiac disease. Frontiers in Medicine, 1, 1–11. doi: 10.3389/fmed.2014.00006
  • Mamone, G., Picariello, G., Addeo, F., & Ferranti, P. (2011). Proteomic analysis in allergy and intolerance to wheat products. Expert Review of Proteomics, 8, 95–115. doi: 10.1586/epr.10.98
  • Mickowska, B., Socha, P., Urminská, D., & Cieślik, E. (2012). The comparison of prolamins extracted from different varieties of wheat, barley, rye and triticale species: amino acid composition, electrophoresis and immunodetection. Journal of Microbiology, Biotechnology and Food Sciences, 1, 742–752.
  • Osborne, T. B. (1924). The vegetable proteins (2nd ed). London: Longmans Green. 154 pp.
  • Rizello, C. G., Curiel, J. A., Nionelli, L., Vincentini, O., Di Cagno, R., Silano, M., … Coda, R. (2014). Use of fungal proteases and selected sourdough lactic acid bacteria for making wheat bread with an intermediate content of gluten. Food Microbiology, 37, 59–68. doi: 10.1016/j.fm.2013.06.017
  • Rizello, C. G., De Angelis, M., De Cagno, R., Camarca, A., Silano, M., Losito, I., … Palmisano, F. (2007). Highly efficient gluten degradation by lactobacilli and fungal proteases during food processing: New perspectives for celiac disease. Applied and Environmental Microbiology, 73, 4499–4507. doi: 10.1128/AEM.00260-07
  • Schägger, H., & von Jagow, G. (1987). Tricine-sodium dodecyl sulfate-polyacrylamide gel electrophoresis for the separation of proteins in the range from 1 to 100 kDa. Analytical Biochemistry, 166, 368–379. doi: 10.1016/0003-2697(87)90587-2
  • Shan, L., Marti, T., Sollid, L. M., Gray, G. M., & Khosla, C. (2004). Comparative biochemical analysis of three bacterial prolyl endopeptidases: Implications for coeliac sprue. Biochemical Journal, 383, 311–318. doi: 10.1042/BJ20040907
  • Shan, L., Molberg, Ø, Parrot, I., Hausch, F., Filiz, F., Gray, G. M., … Khosla, C. (2002). Structural basis for gluten intolerance in celiac sprue. Science, 297, 2275–2279. doi: 10.1126/science.1074129
  • Siegel, M., Bethune, M. T., Gass, J., Ehren, J., Xia, J., Johannsen, A., … Khosla, C. (2006). Rational design of combination enzyme therapy for celiac sprue. Chemistry & Biology, 13, 649–658. doi: 10.1016/j.chembiol.2006.04.009
  • Smith, B. J. (2003). Protein sequencing protocols (Methods in Molecular Biology), (Vol. 211, p. 508). New Jersey: Humana Press.
  • Socha, P., Mickowska, B., Urminská, D., & Kačmárová, K. (2015). The use of different proteases to hydrolyze gliadins. Journal of Microbiology, Biotechnology and Food Sciences, 4(special issue 2), 101–104. doi: 10.15414/jmbfs.2015.4.special2.101-104
  • Solid, L. M., & Khosla, C. (2005). Future therapeutic options for celiac disease. Nature Clinical Practice Gastroenterology & Hepatology, 2, 140–147. doi: 10.1038/ncpgasthep0111
  • Stenman, S. M., Linfors, K., Venäläinen, J. I., Hautala, A., Männistö, P. T., Garcia-Horsman, J. A., … Kaukinen, K. (2010). Degradation of coeliac disease-inducing rye secalin by germinating cereal enzymes: Diminishing toxic effects in intestinal epithelial cells. Clinical and Experimental Immunology, 161, 242–249. doi: 10.1111/j.1365-2249.2010.04119.x
  • Stenman, S. M., Venäläinen, J. I., Lindfors, K., Auriola, S., Mauriala, T., Kaukovirta-Norja, A., … Mäki, M. (2009). Enzymatic detoxification of gluten by germinating wheat proteases: Implications for new treatment of celiac disease. Annals of Medicine, 41, 390–400. doi: 10.1080/07853890902878138
  • Stepniak, D., Spaenij-Dekking, L., Mitea, C., Moester, M., de Ru, A., Baak-Pablo, R., … Koning, F. (2006). Highly efficient gluten degradation with a newly identified prolyl endoprotease: Implications for celiac disease. American Journal of Physiology–Gastrointestinal and Liver Physiology, 291, G621–G629. doi: 10.1152/ajpgi.00034.2006
  • Størsrud, S., Yman, I. M., & Lenner, R. A. (2003). Gluten contamination in oat products and products naturally free from gluten. European Food Research and Technology, 217, 481–485. doi: 10.1007/s00217-003-0786-0
  • Thompson, T., & Méndez, E. (2008). Commercial assays to assess gluten content of gluten-free foods: Why they are not created equal. Journal of the American Dietetic Association, 108, 1682–1687. doi: 10.1016/j.jada.2008.07.012
  • Vaccino, P., Becker, H. A., Brandolini, A., Salamini, F., & Kilian, B. (2009). A catalogue of Triticum monococcum genes encoding toxic and immunogenic peptides for celiac disease patients. Molecular Genetics and Genomics, 281, 289–300. doi: 10.1007/s00438-008-0412-8
  • Wieser, H. (2007). Chemistry of gluten proteins. Food Microbiology, 24, 115–119. doi: 10.1016/j.fm.2006.07.004
  • Zingorne, F., Capone, P., & Cicacci, C. (2010). Celiac disease: Alternatives to a gluten free diet. World Journal of Gastrointestinal Pharmacology and Therapeutics, 1, 36–39. doi: 10.4292/wjgpt.v1.i1.36

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.