1,096
Views
5
CrossRef citations to date
0
Altmetric
Articles

Antibodies as epidemiological markers of genetically modified crop exposure: detection of Cry1Ab-specific IgG

, , , , &
Pages 779-788 | Received 19 Dec 2016, Accepted 27 Mar 2017, Published online: 14 Apr 2017

References

  • Andreassen, M. (2015). Immune properties of cry1Ab transgenic maize studied in mouse models of airway and food allergy. Scandinavian Journal of Immunology, 81(3), 192–200. doi: 10.1111/sji.12269
  • Andreassen, M., Rocca, E., Bohn, T., Wikmark, O. G., van den Berg, J., Lovik, M., & Nygaard, U. C. (2015). Humoral and cellular immune responses in mice after airway administration of Bacillus thuringiensis Cry1Ab and MON810 cry1Ab-transgenic maize. Food and Agricultural Immunology, 26(4), 521–537. doi: 10.1080/09540105.2014.988128
  • Bernstein, I. L., Bernstein, J. A., Miller, M., Tierzieva, S., Bernstein, D. I., Lummus, Z., & Seligy, V. L. (1999). Immune responses in farm workers after exposure to Bacillus thuringiensis pesticides. Environmental Health Perspectives, 107(7), 575–582. doi: 10.1289/ehp.99107575
  • Bourke, R. M. (2009). History of agriculture in Papua New Guinea. Food and Agriculture in Papua New Guinea, 10–26.
  • Bravo, A., Gill, S. S., & Soberon, M. (2007). Mode of action of Bacillus thuringiensis Cry and Cyt toxins and their potential for insect control. Toxicon, 49(4), 423–435. doi: 10.1016/j.toxicon.2006.11.022
  • Bravo, A., Gomez, I., Conde, J., Munoz-Garay, C., Sanchez, J., Miranda, R., … Soberon, M. (2004). Oligomerization triggers binding of a Bacillus thuringiensis Cry1Ab pore-forming toxin to aminopeptidase N receptor leading to insertion into membrane microdomains. Biochimica et Biophysica Acta (BBA)-Biomembranes, 1667(1), 38–46. doi: 10.1016/j.bbamem.2004.08.013
  • Brown, M. D., Carter, J., Watson, T. M., Thomas, P., Santagulianna, G., Purdie, D. M., & Kay, B.H. (2001). Evaluation of liquid Bacillus thuringiensis var. israelensis products for control of Australian Aedes arbovirus vectors. Journal of the American Mosquito Control Association, 17(1), 8–12. .
  • du Rand, N. (July 2009). Isolation of entomopathogenic gram positive spore forming bacteria effective against coleoptera (PhD Thesis). University of KwaZulu-Natal, Pietermaritzburg.
  • Fillinger, U., Knols, B. G., & Becker, N. (2003). Efficacy and efficiency of new Bacillus thuringiensis var. israelensis and Bacillus sphaericus formulations against Afrotropical anophelines in Western Kenya. Tropical Medicine & International Health, 8(1), 37–47. doi: 10.1046/j.1365-3156.2003.00979.x
  • Goldberg, L. J., & Margalit, J. (1977). A bacterial spore demonstrating rapid larvicidal activity against Anopheles sergentii, Uranotaenia unguiculata, Culex univittatus, Aedes aegypti and Culex pipiens. Mosquito News, 37(3), 355–358.
  • Insell, J. P., & Fitz-James, P. C. (1985). Composition and toxicity of the inclusion of Bacillus thuringiensis subsp. israelensis. Applied and Environmental Microbiology, 50(1), 56–62.
  • James, C. (2013). Global status of commercialized biotech/GM crops: 2013. Ithaca, NY: International Service for the Acquisition of Agri-biotech Applications (ISAAA).
  • Klowden, M. J., Held, G. A., & Bulla, L. A. (1983). Toxicity of Bacillus thuringiensis subsp. israelensis to adult Aedes aegypti mosquitoes. Applied and Environmental Microbiology, 46(2), 312–315.
  • Kroghsbo, S., Madsen, C., Poulsen, M., Schrøder, M., Kvist, P. H., Taylor, M., … Knudsen, I. (2008). Immunotoxicological studies of genetically modified rice expressing PHA-E lectin or Bt toxin in Wistar rats. Toxicology, 245, 24–34. doi: 10.1016/j.tox.2007.12.005
  • Lorch, A., & Then, C. (2007). How much Bt toxin do genetically engineered MON810 maize plants actually produce: Bt concentrations in field plants from Germany and Spain. Hamburg: Greenpeace.
  • López-Pazos, S. A., & Cerón, J. (2007). Three-dimensional structure of Bacillus thuringiensis toxins: A review. Acta Biológica Colombiana, 12, 19–32.
  • Madigan M. T., & Martinko, J. M. (Eds.). (2005). Brock biology of microorganisms (11th ed.) Boston: Prentice Hall. ISBN 978-0-13-144329-7.
  • Mutoni, C. K. (2014). Assessment of maize food products in the Kenyan market for presence of genetic elements and proteins from genetically modified organisms (Doctoral Dissertation). Jomo Kenyatta University of Agriculture and Technology, Juja, Kenya.
  • Nakajima, O., Teshima, R., Takagi, K., Okunuki, H., & Sawada, J. I. (2007). ELISA method for monitoring human serum IgE specific for Cry1Ab introduced into genetically modified corn. Regulatory Toxicology and Pharmacology, 47(1), 90–95. doi: 10.1016/j.yrtph.2006.08.003
  • Pigott, C. R., & Ellar, D. J. (2007). Role of receptors in Bacillus thuringiensis crystal toxin activity. Microbiology and Molecular Biology Reviews, 71(2), 255–281. doi: 10.1128/MMBR.00034-06
  • Pusztai-Carey, M. (2016). Research Interests. Department of Biochemistry, Case Western Reserve University School of Medicine. Retrieved from http://www.case.edu/medbiochemistry/faculty/pusztai.html
  • Schnepf, E., Crickmore, N., Van Rie, J., Lereclus, D., Baum, J., Feitelson, J., & Dean, D. H. (1998). Bacillus thuringiensis and its pesticidal crystal proteins. Microbiology and Molecular Biology Reviews, 62(3), 775–806.
  • Shimada, N., Kim, Y. S., Miyamoto, K., Yoshioka, M., & Murata, H. (2003). Effects of Bacillus thuringiensis Cry1Ab toxin on mammalian cells. Journal of Veterinary Medical Science, 65(2), 187–191. doi: 10.1292/jvms.65.187
  • Shimada, N., Miyamoto, K., Kanda, K., & Murata, H. (2006). Bacillus thuringiensis insecticidal crylab toxin does not affect the membrane integrity of the mammalian intestinal epithelial cells: An in vitro study. In Vitro Cellular & Developmental Biology-Animal, 42(1–2), 45–49. doi: 10.1007/s11626-006-0011-0
  • Székács, A., Weiss, G., Quist, D., Takács, E., Darvas, B., Meier, M., & Hilbeck, A. (2012). Inter-laboratory comparison of Cry1Ab toxin quantification in MON 810 maize by enzyme-immunoassay. Food and Agricultural Immunology, 23(2), 99–121. doi: 10.1080/09540105.2011.604773
  • U.S. Department of Agriculture: National Agricultural Statistics Service (2006, 3 January). Ohio State Agriculture Overview, 2004. Retrieved January 12, 2006, from http://www.nass.usda.gov/Statistics_by_State/Ag_Overview/AgOverview_OH.pdf
  • Vachon, V., Laprade, R., & Schwartz, J. L. (2012). Current models of the mode of action of Bacillus thuringiensis insecticidal crystal proteins: A critical review. Journal of Invertebrate Pathology, 111(1), 1–12. doi: 10.1016/j.jip.2012.05.001
  • Vázquez-Padrón, R. I., Moreno-Fierros, L., Neri-Bazán, L., de la Riva, G. A., & López-Revilla, R. (1999). Intragastric and intraperitoneal administration of Cry1Ac protoxin from bacillus thuringiensis induce systemic and mucosal antibody response in mice. Life Sciences, 64, 1897–1912. doi: 10.1016/S0024-3205(99)00136-8
  • Zwahlen, C., Hilbeck, A., Gugerli, P., & Nentwig, W. (2003). Degradation of the Cry1Ab protein within transgenic Bacillus thuringiensis corn tissue in the field. Molecular Ecology, 12(3), 765–775. doi: 10.1046/j.1365-294X.2003.01767.x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.