1,916
Views
7
CrossRef citations to date
0
Altmetric
Articles

Toll-like receptor 2-mediated induction of avian β-defensin 9 by Lactobacillus rhamnosus and its cellular components in chicken intestinal epithelial cells

, , , , , & ORCID Icon show all
Pages 398-417 | Received 28 Jan 2019, Accepted 07 Mar 2019, Published online: 28 Mar 2019

References

  • Ahn, S. I., Kim, J. S., Hong, C. Y., Gu, G. J., Shin, H. M., Paek, J. H., … Youn, H. S. (2016). Eupatorium makinoi suppresses toll-like receptor signaling pathways. Food & Agricultural Immunology, 27, 242–250. doi: 10.1080/09540105.2015.1086315
  • Avila, E. E. (2017). Functions of antimicrobial peptides in vertebrates. Current Protein & Peptide Science, 18, 1098–1119. doi: 10.2174/1389203717666160813162629
  • Banerjee, A., & Gerondakis, S. (2007). Coordinating TLR-activated signaling pathways in cells of the immune system. Immunology & Cell Biology, 85, 420–424. doi: 10.1038/sj.icb.7100098
  • Bhattacharyya, S., Ghosh, S. K., Shokeen, B., Eapan, B., Lux, R., Kiselar, J., … Weinberg, A. (2016). FAD-I, a Fusobacterium nucleatum cell wall-asociated diacylated lipoprotein that mediates human beta defensin 2 induction through Toll-like receptor-1/2 (TLR-1/2) and TLR-2/6. Infection & Immuity, 84, 1446–1456. doi: 10.1128/IAI.01311-15
  • Brownlie, R., & Allan, B. (2011). Avian Toll-like receptors. Cell and Tissue Research, 343, 121–130. doi: 10.1007/s00441-010-1026-0
  • Corthésy, B., Gaskins, H. R., & Mercenier, A. (2007). Cross-talk between probiotic bacteria and the host immune system. The Journal of Nurtrition, 137, 781S–790S. doi: 10.1093/jn/137.3.781S
  • Cuperus, T., Coorens, M., van Dijk, A., & Haagsman, H. P. (2013). Avian host defense peptides. Developmental & Comparative Immunology, 41, 352–369. doi: 10.1016/j.dci.2013.04.019
  • Delcenserie, V., Martel, D., Lamoureux, M., Amiot, J., Boutin, Y., & Roy, D. (2008). Immunomodulatory effects of probiotics in the intestinal tract. Current Issues in Molecular Biology, 10, 37–54.
  • Fan, Y. R., Jin, X., Tian, Q. Z., Zhang, M., Liu, J., & Yang, Y. F. (2016). Preliminary study on the pathway of SBD-1 expression in sheep rumen epithelial cells induced by Lactobacillus plantarum. Acta Veterinaria et Zootechnica Sinica, 47, 1026–1032. doi: 10.11843/j.issn.0366-6964.2016.05.021
  • Galdeano, C. M., de Moreno de LeBlanc, A., Vinderola, G., Bonet, M. E., & Perdigón, G. (2007). Proposed model: Mechanisms of immunomodulation induced by probiotic bacteria. Clinical & Vaccine Immunology, 14, 485–492. doi: 10.1128/CVI.00406-06
  • Gan, Y., Cui, X., Ma, T., Liu, Y., Li, A., & Huang, M. (2014). Paeoniflorin upregulates β-defensin-2 expression in human bronchial epithelial cell through the p38 MAPK, ERK, and NF-κB signaling pathways. Inflammation, 37, 1468–1475. doi: 10.1007/s10753-014-9872-7
  • Ghadimi, D., Hassan, M., Njeru, P. N., de Vrese, M., Geis, A., Shalabi, S. I., … Schrezenmeir, J. (2011). Suppression subtractive hybridization identifies bacterial genomic regions that are possibly involved in hBD-2 regulation by enterocytes. Molecular Nutrition & Food Research, 55, 1533–1542. doi: 10.1002/mnfr.201100052
  • Giahi, L., Elmadfa, I., Hoseini, M., & Klein, P. (2013). Heat-inactivated Lactobacillus rhamnosus and Lactobacillus delbrueckii induce efficient maturation and differential cytokine production in human monocyte derived dendritic cells. Food & Agricultural Immunology, 24, 95–109. doi: 10.1080/09540105.2011.651445
  • Gupta, S., Ghosh, S. K., Scott, M. E., Bainbridge, B., Jiang, B., Lamont, R. J., … Weinberg, A. (2010). Fusobacterium nucleatum-associated beta-defensin inducer (FAD-I): identification, isolation, and functional evaluation. Journal of Biological Chemistry, 285, 36523–36531. doi: 10.1074/jbc.M110.133140
  • Haarmann, H., Steiner, T., Schreiber, F., Heinrich, A., Zweigner, J., Die N’Guessan, P., & Slevogt, H. (2015). The role and regulation of Moraxella catarrhalis-induced human beta-defensin 3 expression in human pulmonary epithelial cells. Biochemical and Biophysical Research Communications, 467, 46–52. doi: 10.1016/j.bbrc.2015.09.126
  • Habil, N., Abate, W., Beal, J., & Foey, A. D. (2014). Heat-killed probiotic bacteria differentially regulate colonic epithelial cell production of human β-defensin-2: Dependence on inflammatory cytokines. Beneficial Microbes, 5, 483–495. doi: 10.3920/BM2013.0061
  • Han, J., Wang, Y., Song, D., Lu, Z., Dong, Z., Miao, H., … Li, A. (2018). Effects of Clostridium butyricum and Lactobacillus plantarum on growth performance, immune function and volatile fatty acid level of caecal digesta in broilers. Food & Agricultural Immunology, 29, 797–807. doi: 10.1080/09540105.2018.1457013
  • Hong, Z. M., Jia, Y. J., Qiu, M. R., Li, G. H., & Liu, S. G. (2011). Isolation and primary culture of chicken embryo small intestinal epithelial cells. Acta Agriculturae Universitatis Jiangxiensis, 33, 1164–1170. doi: 10.13836/j.jjau.2011209
  • Jang, B. C., Lim, K. J., Paik, J. H., Kwon, Y. K., Shin, S. W., Kim, S. C., … Suh, S. I. (2004). Up-regulation of human beta-defensin 2 by interleukin- 1β in A549 cells: Involvement of PI3K, PKC, p38 MAPK, JNK, and NF-kappaB. Biochemical & Biophysical Research Communications, 320, 1026–1033. doi: 10.1016/j.bbrc.2004.06.049
  • Jensen, G. S., Cash, H. A., Farmer, S., & Keller, D. (2017). Inactivated probiotic Bacillus coagulans GBI-30 induces complex immune activating, anti-inflammatory, and regenerative markers in vitro. Joural of Inflammation Research, 10, 107–117. doi: 10.2147/JIR.S141660
  • Jeong, J. J., Lee, H. J., Jang, S. E., Han, M. J., & Kim, D. H. (2018). Lactobacillus plantarum C29 alleviates NF-κB activation and Th17/Treg imbalance in mice with TNBS-induced colitis. Food & Agricultural Immunology, 29, 577–589. doi: 10.1080/09540105.2017.1418841
  • Ji, S., Shin, J. E., Kim, Y. S., Oh, J. E., Min, B. M., & Choi, Y. (2009). Toll-like receptor 2 and NALP2 mediate induction of human beta-defensins by Fusobacterium nucleatum in gingical epithelial cells. Infection & Immunity, 77, 1044–1052. doi: 10.1128/IAI.00449-08
  • Jin, X., Zhang, M., Zhu, X. M., Fan, Y. R., Du, C. G., Bao, H. E., … Yang, Y. F. (2018). Modulation of ovine SBD-1 expression by Saccharomyces cerevisiae in ovine ruminal epithelial cells. BMC Veterinary Research, 14, 134. doi: 10.1186/s12917-018-1445-9
  • Ju, S. M., Goh, A. R., Kwon, D. J., Youn, G. S., Kwon, H. J., Bae, Y. S., … Park, J. (2012). Extracellular HIV-1 Tat induces human beta-defensin-2 production via NF-kappaB/AP-1 dependent pathways in human B cells. Molecules & Cells, 33, 335–341. doi: 10.1007/s10059-012-2287-0
  • Kaiser, V., & Diamond, G. (2000). Expression of mammalian defensin genes. Journal of Leukocyte Biology, 68, 779–784. doi: 10.1189/jlb.68.6.779
  • Kaminska, B. (2005). MAPK signaling pathways as molecular targets for anti-inflammatory therapy - from molecular mechanisms to therapeutic benefits. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics, 1754, 253–262. doi: 10.1016/j.bbapap.2005.08.017
  • Kim, Y. J., Shin, H. S., Lee, J. H., Jung, Y. W., Kim, H. B., & Ha, U. H. (2013). Pneumolysin-mediated expression of beta-defensin 2 is coordinated by p38 MAP kinase-MKP1 in human airway cells. Journal of Microbiology, 51, 194–199. doi: 10.1007/s12275-013-2579-x
  • Krisanaprakornkit, S., Kimball, J. R., & Dale, B. A. (2002). Regulation of human β-Defensin-2 in gingival epithelial cells: The involvement of mitogen-activated protein kinase pathways, but not the NF-κB transcription factor family. The Journal of Immunology, 168, 316–324. doi: 10.4049/jimmunol.168.1.316
  • Kumar, A., Zhang, J., & Yu, F. S. (2006). Toll-like receptor 2-mediated expression of β-defensin-2 in human corneal epithelial cells. Microbes & Infection, 8, 380–389. doi: 10.1016/j.micinf.2005.07.006
  • Lai, Y., & Gallo, R. L. (2009). AMPed up immunity: How antimicrobial peptides have multiple roles in immune defense. Trends in Immunology, 30, 131–141. doi: 10.1016/j.it.2008.12.003
  • Lajczak, N. K., Saint-Criq, V., O’Dwyer, A. M., Perino, A., Adorini, L., Schoonjans, K., & Keely, S. J. (2017). Bile acids deoxycholic acid and ursodeoxycholic acid differentially regulate human β-defensin-1 and -2 secretion by colonic epithelial cells. The FASEB Journal, 31, 3848–3857. doi: 10.1096/fj.201601365R
  • Lee, I. C., Caggianiello, G., van Swam, I. I., Taverne, N., Meijerink, M., Bron, P. A., … Schaffner, D. W. (2016). Strain-specific features of extracellular polysaccharides and their impact on Lactobacillus plantarum-host interactions. Applied & Environmental Microbiology, 82, 3959–3970. doi: 10.1128/AEM.00306-16
  • Lee, H. Y., Takeshita, T., Shimada, J., Akopyan, A., Woo, J. I., Pan, H., … Lim, D. (2008). Induction of beta defensin 2 by NTHi requires TLR2 mediated MyD88 and IRAK-TRAF6-p38MAPK signaling pathway in human middle ear epithelial cells. BMC Infectious Diseases, 8, 87. doi: 10.1186/1471-2334-8-87
  • Li, G. H., Hong, Z. M., Jia, Y. J., You, J. M., Zhang, J. H., & Liu, B. S. (2012). Probiotic Lactobacilli stimulate avian beta-defensin 9 expression in cultured chicken small intestinal epithelial cells. Proceedings of the Nutrition Society, 71, E239. doi: 10.1017/S0029665112003308
  • Li, D., Lei, H., Li, Z., Li, H., Wang, Y., Lai, Y., & Ryffel, B. (2013). A novel lipopeptide from skin commensal activates TLR2/CD36-p38MAPK signaling to increase antibacterial defense against bacterial infection. PLoS One, 8, e58288. doi: 10.1371/journal.pone.0058288
  • Lynn, D. J., Higgs, R., Gaines, S., Tierney, J., James, T., Lloyd, A. T., … O’Farrelly, C. (2004). Bioinformatic discovery and initial characterization of nine novel antimicrobial peptides genes in the chicken. Immunogenetics, 56, 170–177. doi: 10.1007/s00251-004-0675-0
  • Madi, A., Alnabhani, Z., Leneveu, C., Mijouin, L., Feuilloley, M., & Connil, N. (2013). Pseudomonas fluorescens can induce and divert the human beta-defensin-2 secretion in intestinal epithelial cells to enhance its virulence. Archives of Microbiology, 195, 189–195. doi: 10.1007/s00203-012-0865-3
  • Maldonada-Contreras, A. L., & McCormick, B. A. (2011). Intestinal epithelial cells and their role in innate mucosal immunity. Cell & Tissue Research, 343, 5–12. doi: 10.1007/s00441-010-1082-5
  • Maynard, C. L., Elson, C. O., Hatton, R. D., & Weaver, C. T. (2012). Reciprocal interactions of the intestinal microbiota and immune system. Nature, 489, 231–241. doi: 10.1038/nature11551
  • Menzies, B. E., & Kenoyer, A. (2006). Signal transduction and nuclear responses in Staphylococcus aureus-induced expression of human beta-defensin 3 in skin keratinocytes. Infection & Immunity, 74, 6847–6854. doi: 10.1128/IAI.00389-06
  • Miörner, H., Johansson, G., & Kronvall, G. (1983). Lipoteichoic acid is the major cell wall component responsible for surface hydrophobicity of group A streptococci. Infection & Immunity, 39, 336–343
  • Möndel, M., Schroeder, B. O., Zimmermann, K., Huber, H., Nuding, S., Beisner, J., … Wehkamp, J. (2009). Probiotic E. coli treatment mediates antimicrobial human beta-defensin synthesis and fecal excretion in humans. Mucosal Immunology, 2, 166–172. doi: 10.1038/mi.2008.77
  • Ng, S. C., Hart, A. L., Kamm, M. A., Stagg, A. J., & Knight, S. C. (2009). Mechanisms of action of probiotics: Recent advances. Inflammatory Bowel Diseases, 15, 300–310. doi: 10.1002/ibd.20602
  • O’Flaherty, S., Saulnier, D. M., Pot, B., & Versalovic, J. (2010). How can probiotics and prebiotics impact mucosal immunity? Gut Microbes, 1, 293–300. doi: 10.4161/gmic.1.5.12924
  • Ogushi, K., Wada, A., Niidome, T., Mori, N., Oishi, K., Nagatake, T., … Hirayama, T. (2001). Salmonella enteritidis FliC (flagella filament protein) induces human beta-defensin-2 mRNA production by Caco-2 cells. Journal of Biological Chemistry, 276, 30521–30526. doi: 10.1074/jbc.M011618200
  • O’Neil, D. A., Porter, E. M., Elewaut, D., Anderson, G. M., Eckmann, L., Ganz, T., & Kagnoff, M. F. (1999). Expression and regulation of the human beta-defensins hBD-1 and hBD-2 in intestinal epithelium. Journal of Immunology, 163, 6718–6724.
  • Pahl, H. L. (1999). Activators and target genes of Rel/NF-kappaB transcription factors. Oncogene, 18, 6853–6866. doi: 10.1038/sj.onc.1203239
  • Paolillo, R., Carratelli, C. R., Sorrentino, S., Mazzola, N., & Rizzo, A. (2009). Immunomodulatory effects of Lactobacillus plantarum on human colon cancer cells. International Immunopharmacology, 9, 1265–1271. doi: 10.1016/j.intimp.2009.07.008
  • Rizzo, A., Losacco, A., Romano, C., & Carratelli, C. R. (2013). Lactobacillus crispatus modulates epithelial cell defense against Candida albicans through Toll-like receptors 2 and 4, interleukin 8 and human β-defensins 2 and 3. Immunology Letters, 156, 102–109. doi: 10.1016/j.imlet.2013.08.013
  • Sanchez, B., Urdaci, M. C., & Margolles, A. (2010). Extracellular proteins secreted by probiotic bacteria as mediators of effects that promote mucosa-bacteria interactions. Microbiology, 156, 3232–3242. doi: 10.1099/mic.0.044057-0
  • Scharf, S., Vardarova, K., Lang, F., Schmeck, B., Opitz, Z., Flieger, A., … N’Guessan, P. D. (2010). Legionella pneumophila induces human beta defensin-3 in pulmonary cells. Respiratory Research, 11, 93. doi: 10.1186/1465-9921-11-93
  • Scharf, S., Zahlten, J., Szymanski, K., Hippenstiel, S., Suttorp, N., & N’Guessan, P. D. (2012). Streptococcus pneumoniae induces human β-defensin-2 and -3 in human lung epithelium. Experimental Lung Research, 38, 100–110. doi: 10.3109/01902148.2011.652802
  • Schlee, M., Harder, J., Köten, B., Stange, E. F., Wehkamp, J., & Fellermann, K. (2008). Probiotic lactobacilli and VSL#3 induce enterocyte beta-defensin 2. Clinical & Experimental Immunology, 151, 528–535. doi: 10.1111/j.1365-2249.2007.03587.x
  • Schlee, M., Wehkamp, J., Altenhoefer, A., Oelschlaeger, T. A., Stange, E. F., & Fellermann, K. (2007). Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infection & Immunity, 75, 2399–2407. doi: 10.1128/IAI.01563-06
  • Schmitt, P., Wacyk, J., Morales-Lange, B., Rojas, V., Guzmán, F., Dixon, B., & Mercado, L. (2015). Immunomodulatory effect of cathelicidins in response to a β-glucan in intestinal epithelial cell from rainbow trout. Develpomental & Comparative Immunology, 51, 160–169. doi: 10.1016/j.dci.2015.03.007
  • Sekine, K., Toida, T., Saito, M., Kubyama, M., Kawashima, T., & Hashimoto, Y. (1985). A new morphologically characterized cell wall preparation (whole peptidoglycan) from Bifidobacterium infantis with a higher efficacy on the regression of an established tumor in mice. Cancer Research, 45, 1300–1307.
  • Śliżewska, K., & Markowiak, P. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10, 21. doi: 10.1186/s13099-018-0250-0
  • St Paul, M., Paolucci, S., & Sharif, S. (2013). Characterization of responses initiated by different Toll-like 2 ligands in chicken spleen cells. Research in Veterinary Science, 95, 919–923. doi: 10.1016/j.rvsc.2013.06.025
  • Sukhithasri, V., Nisha, N., Biswas, L., Anil Kumar, V., & Biswas, R. (2013). Innate immune recognition of microbial cell wall components and microbial strategies to evade such recognitions. Microbiological Research, 168, 396–406. doi: 10.1016/j.micres.2013.02.005
  • Sunkara, L. T., Achanta, M., Schreiber, N. B., Bommineni, Y. R., Dai, G., Jiang, W., … Zhang, G. (2011). Butyrate enhances disease resistance of chickens by inducing antimicrobial host defense peptide gene expression. PLoS One, 6, e27225. doi: 10.1371/journal.pone.0027225
  • Vaishnava, S., Behrendt, C. L., Ismail, A. S., Eckmann, L., & Hooper, L. V. (2008). Paneth cells directly sense gut commensals and maintain homeostasis at the intestinal host microbial interface. Proceedings of the National Academy of Sciences, 105, 20858–20863. doi: 10.1073/pnas.0808723105
  • van Dijk, A., Veldhuizen, E. J. A., & Haagsman, H. P. (2008). Avian defensins. Veterinary Immunology and Immunopathology, 124, 1–18. doi: 10.1016/j.vetimm.2007.12.006
  • van Dijk, A., Veldhuizen, E. J., Kalkhove, S. I., Tjeerdsmavan Bokhoven, J. L., Romijn, R. A., & Haagsman, H. P. (2007). The β-defensin gallinacin-6 is expressed in the chicken digestive tract and has antimicrobial activity against food-borne pathogens. Antimicrobial Agents & Chemotherapy, 51, 912–922. doi: 10.1128/AAC.00568-06
  • Vasselon, T., Hanlon, W. A., Wright, S. D., & Detmers, P. A. (2002). Toll-like receptor 2 (TLR2) mediates activation of stress-activated MAP kinase p38. Journal of Leukocyte Biology, 71, 503–510. doi: 10.1189/jlb.71.3.503
  • Vora, P., Youdim, A., Thomas, L. S., Fukata, M., Tesfay, S. Y., Lukasek, K., … Abreu, M. T. (2004). Beta-defensin-2 expression is regulated by TLR signaling in intestinal epithelial cells. The Journal of Immunology, 173, 5398–5405. doi: 10.4049/jimmunol.173.9.5398
  • Wang, G., Feng, Y., Wang, Y., Huang, N., Wu, Q., & Wang, B. (2003). Bifidobacterium cell wall proteins induced beta-defensin 2 mRNA expression in human intestinal epithelial cells. Journal of Sichuan University. Medical Science Edition, 34, 622–624.
  • Wehkamp, J., Harder, J., Wehkamp, K., Wehkamp-von Meissne, B., Schlee, M., Enders, C., … Stange, E. F. (2004). NF-kappaB- and AP-1-mediated induction of human beta defensin-2 in intestinal epithelial cells by Escherichia coli Nissle 1917: A novel effect of a probiotic bacterium. Infection & Immunity, 72, 5750–5758. doi: 10.1128/IAI.72.10.5750-5758.2004
  • Xiao, Y., Hughes, A. L., Ando, J., Matsuda, Y., Cheng, J. F., Skinner-Noble, D., & Zhang, G. (2004). A genome-wide screen identifies a single β-defensin gene cluster in the chicken: Implications for the origin and evolution of mammalian defensins. BMC Genomics, 5, 56–66. doi: 10.1186/1471-2164-5-56
  • Yacoub, H. A., El-Hamidy, S. M., Mahmoud, M. M., Nabih Baeshen, M., Almehdar, H. A., Uversky, V. N., … Elazzazy, A. M. (2016). Biocidal activity of chicken defensin-9 against microbial pathogens. Biochemistry & Cell Biology, 94, 176–187. doi: 10.1139/bcb-2015-0121
  • Yuan, W., Jin, H. T., Ren, Z. H., Deng, J. L., Zuo, Z. C., Wang, Y., … Deng, Y. T. (2015). Effects of antibacterial peptide on humoral immunity in weaned piglets. Food & Agricultural Immunology, 26, 682–689. doi: 10.1080/09540105.2015.1007448
  • Zasloff, M. (2002). Antimicrobial peptides of multicellular organisms. Nature, 415, 389–395. doi: 10.1038/415389a
  • Zhang, M., Jin, X., & Yang, Y. F. (2019). β-Glucan from Saccharomyces cerevisiae induces SBD-1 production in ovine ruminal epithelial cells via the Dectin-1-Syk-NF-κB signaling pathway. Cellular Signalling, 53, 304–315. doi: 10.1016/j.cellsig.2018.10.018