2,194
Views
23
CrossRef citations to date
0
Altmetric
Articles

Simple and sensitive detection of triazophos pesticide by using quantum dots nanobeads based on immunoassay

, , , , , , , , , , , , , & show all
Pages 522-532 | Received 19 Feb 2019, Accepted 13 Mar 2019, Published online: 20 Apr 2019

References

  • Anastassiades, M., Lehotay, S. J., Stajnbaher, D., & Schenck, F. J. (2003). Fast and easy multiresidue method employing acetonitrile extraction/partitioning and “dispersive solid-phase extraction” for the determination of pesticide residues in produce. Journal of Aoac International, 86(2), 412–431.
  • Andrade, G. C., Monteiro, S. H., Francisco, J. G., Figueiredo, L. A., Botelho, R. G., & Tornisielo, V. L. (2015). Liquid chromatography-electrospray ionization tandem mass spectrometry and dynamic multiple reaction monitoring method for determining multiple pesticide residues in tomato. Food Chemistry, 175, 57–65. doi: 10.1016/j.foodchem.2014.11.105
  • Chen, Y. P., Ning, B., Liu, N., Feng, Y., Liu, Z., Liu, X., & Gao, Z. X. (2010). A rapid and sensitive fluoroimmunoassay based on quantum dot for the detection of chlorpyrifos residue in drinking water. Journal of Environmental Science and Health. Part. B, Pesticides, Food Contaminants, and Agricultural Wastes, 45(6), 508–515. doi: 10.1080/03601234.2010.493476
  • Chen, G., Yang, L., Jin, M., Du, P., Zhang, C., Wang, J., … Wang, J. (2015). The rapid screening of triazophos residues in agricultural products by chemiluminescent enzyme immunoassay. PLoS One, 10(7), e0133839. doi: 10.1371/journal.pone.0133839
  • Du, D., Cai, J., Song, D., & Zhang, A. (2007). Rapid determination of triazophos using acetylcholinesterase biosensor based on sol–gel interface assembling multiwall carbon nanotubes. Journal of Applied Electrochemistry, 37(8), 893–898. doi: 10.1007/s10800-007-9328-y
  • Du, P. F., Jin, M. J., Yang, L. H., Du, X. W., Chen, G., Zhang, C., … Wang, J. (2015). A rapid immunomagnetic-bead-based immunoassay for triazophos analysis. Rsc Advances, 5(99), 81046–81051. doi: 10.1039/c5ra15106f
  • Frigerio, C., Ribeiro, D. S. M., Rodrigues, S. S. M., Abreu, V. L. R. G., Barbosa, J. A. C., Prior, J. A. V., … Santos, J. L. M. (2012). Application of quantum dots as analytical tools in automated chemical analysis: A review. Analytica Chimica Acta, 735, 9–22. doi: 10.1016/j.aca.2012.04.042
  • Gong, T. T., Liu, J. F., Liu, X. X., Liu, J., Xiang, J. K., & Wu, Y. W. (2016). A sensitive and selective sensing platform based on CdTe QDs in the presence of L-cysteine for detection of silver, mercury and copper ions in water and various drinks. Food Chemistry, 213, 306–312. doi: 10.1016/j.foodchem.2016.06.091
  • Gong, T., Liu, J., Wu, Y., Xiao, Y., Wang, X., & Yuan, S. (2017). Fluorescence enhancement of CdTe quantum dots by HBcAb-HRP for sensitive detection of H2O2 in human serum. Biosensors & Bioelectronics, 92, 16–20. doi: 10.1016/j.bios.2017.01.048
  • Hua, X. F., Liu, T. C., Cao, Y. C., Liu, B., Wang, H. Q., Wang, J. H., … Zhao, Y. D. (2006). Characterization of the coupling of quantum dots and immunoglobulin antibodies. Analytical and Bioanalytical Chemistry, 386(6), 1665–1671. doi: 10.1007/s00216-006-0807-5
  • Ji, X. J., Zheng, J. Y., Xu, J. M., Rastogi, V. K., Cheng, T. C., DeFrank, J. J., & Leblanc, R. M. (2005). (Cdse)ZnS quantum dots and organophosphorus hydrolase bioconjugate as biosensors for detection of paraoxon. Journal of Physical Chemistry B, 109(9), 3793–3799. doi: 10.1021/jp044928f
  • Khantaw, T., Boonmee, C., Tuntulani, T., & Ngeontae, W. (2013). Selective turn-on fluorescence sensor for Ag+ using cysteamine capped CdS quantum dots: Determination of free Ag+ in silver nanoparticles solution. Talanta, 115, 849–856. doi: 10.1016/j.talanta.2013.06.053
  • Lai, W. (2017). Pesticide use and health outcomes: Evidence from agricultural water pollution in China. Journal of Environmental Economics and Management, 86, 93–120. doi: 10.1016/j.jeem.2017.05.006
  • Li, S., Dong, M., Li, R., Zhang, L., Qiao, Y., Jiang, Y., & Qi, W. (2015). A fluorometric microarray with ZnO substrate-enhanced fluorescence and suppressed “coffee-ring” effects for fluorescence immunoassays. Nanoscale, 7(44), 18453–18458. https://doi.org/10.1039/C5NR06070B
  • Liu, Y., Liu, R., Boroduleva, A., Eremin, S., Guo, Y., & Zhu, G. (2016). A highly specific and sensitive fluorescence polarization immunoassay for the rapid detection of triazophos residue in agricultural products. Analytical Methods, 8(36), 6636–6644. https://doi.org/10.1039/C6AY00908E
  • Liu, J., Zhang, Q., Zhang, W., Ding, X., Hu, X., Zhao, F., & Li, P. (2013). Development of a fluorescence-linked immunoassay based on quantum dots for fenvalerate. Food and Agricultural Immunology, 25(1), 82–93. doi: 10.1080/09540105.2012.749220
  • Mao, Q., Liu, X., Chen, C., Ye, J., Liang, H., Li, B., & Sun, X. (2018). A dual‐label time‐resolved fluorescence immunoassay for the simultaneous determination of carcinoembryonic antigen and squamous cell carcinoma antigen. Biotechnology and Applied Biochemistry, 65(6), 816–821. https://doi.org/10.1002/bab.2018.65.issue-6 doi: 10.1002/bab.1663
  • Matyus, M., Kocsis, G., Boldis, O., Karvaly, G., Magyar, E., Furesz, J., & Gachalyi, A. (2012). Determination of morphine and codeine in serum after poppy seed consumption using Gas chromatography-mass spectrometry. Acta Chromatographica, 24(3), 351–365. doi: 10.1556/AChrom.24.2012.3.2
  • Piloto, A. M., Ribeiro, D. S. M., Rodrigues, S. S. M., Santos, C., Santos, J. L. M., & Sales, M. G. F. (2018). Plastic antibodies tailored on quantum dots for an optical detection of myoglobin down to the femtomolar range. Scientific Reports, 8), doi:ARTN 4944 10.1038/s41598-018-23271-z
  • Rainina, E. I., Efremenco, E. N., Varfolomeyev, S. D., Simonian, A. L., & Wild, J. R. (1996). The development of a new biosensor based on recombinant E-coli for the direct detection of organophosphorus neurotoxins. Biosensors & Bioelectronics, 11(10), 991–1000. doi: 10.1016/0956-5663(96)87658-5
  • Taton, T. A. (2000). Scanometric DNA array detection with nanoparticle probes. Science, 289(5485), 1757–1760. doi: 10.1126/science.289.5485.1757
  • Tochi, B. N., Khaemba, G., Isanga, J., Mukunzi, D., Liu, L., Peng, J., … Xu, C. (2015). Monoclonal antibody for the development of specific immunoassays to detect Enrofloxacin in foods of animal origin. Food and Agricultural Immunology, 27(4), 435–448. doi: 10.1080/09540105.2015.1089844
  • Vermeire, T., MacPhail, R., & Waters, M. (2003). Integrated human and ecological risk assessment: A case study of organophosphorous pesticides in the environment. Human and Ecological Risk Assessment, 9(1), 343–357. doi:10.1080/718990537.
  • Wang, J., Wang, Q., Zheng, Y., Peng, T., Yao, K., Xie, S., … Jiang, H. (2017). Development of a quantitative fluorescence-based lateral flow immunoassay for determination of chloramphenicol, thiamphenicol and florfenicol in milk. Food and Agricultural Immunology, 29(1), 56–66. doi: 10.1080/09540105.2017.1359498
  • Wu, J., Ma, J., Wang, H., Qin, D., An, L., Ma, Y., … Wu, X. (2019). Rapid and visual detection of benzothiostrobin residue in strawberry using quantum dot-based lateral flow test strip. Sensors and Actuators B: Chemical, 283, 222–229. doi: 10.1016/j.snb.2018.11.137
  • Yan, X., Shi, H., & Wang, M. (2012). Development of an enzyme-linked immunosorbent assay for the simultaneous determination of parathion and imidacloprid. Analytical Methods, 4(12), 4053. doi: 10.1039/c2ay25760b
  • Zajac, A., Song, D., Qian, W., & Zhukov, T. (2007). Protein microarrays and quantum dot probes for early cancer detection. Colloids and Surfaces. B, Biointerfaces, 58(2), 309–314. doi: 10.1016/j.colsurfb.2007.02.019
  • Zhang, C., Du, P., Jiang, Z., Jin, M., Chen, G., Cao, X., … Wang, J. (2018). A simple and sensitive competitive bio-barcode immunoassay for triazophos based on multi-modified gold nanoparticles and fluorescent signal amplification. Analytica Chimica Acta, 999, 123–131. doi: 10.1016/j.aca.2017.10.032
  • Zhang, C., Han, Y., Lin, L., Deng, N., Chen, B., & Liu, Y.. (2017). Development of Quantum Dots-Labeled Antibody Fluorescence Immunoassays for the Detection of Morphine. Journal of Agricultural and Food Chemistry, 65(6), 1290–1295. https://doi.org/10.1021/acs.jafc.6b05305
  • Zhang, C., Hu, R. F., Shi, G. M., Jin, Y. H., Robson, M. G., & Huang, X. S. (2015). Overuse or underuse? An observation of pesticide use in China. Science of the Total Environment, 538, 1–6. doi: 10.1016/j.scitotenv.2015.08.031