1,547
Views
9
CrossRef citations to date
0
Altmetric
Articles

An innovative hapten and monoclonal antibody-based immunoassay for determining tebuconazole residues in aqueous samples

, , , , , , , & show all
Pages 677-691 | Received 02 Apr 2019, Accepted 22 Apr 2019, Published online: 27 May 2019

References

  • Bernardes, P. M., Andrade-Vieira, L. F., Aragao, F. B., Ferreira, A., & da Silva Ferreira, M. F. (2015). Toxicity of difenoconazole and tebuconazole in allium cepa. Water Air and Soil Pollution, 226(7), 206–217. doi: 10.1007/s11270-015-2462-y
  • Bordagaray, A., Garcia-Arrona, R., & Millan, E. (2014). Determination of triazole fungicides in liquid samples using ultrasound-assisted emulsification microextraction with solidification of floating organic droplet followed by high-performance liquid chromatography. Food Analytical Methods, 7(6), 1195–1203. doi: 10.1007/s12161-013-9733-2
  • Chen, Y., Kong, D., Liu, L., Song, S., Kuang, H., & Xu, C. (2015). Development of an enzyme-linked immunosorbent assay (ELISA) for natamycin residues in foods based on a specific monoclonal antibody. Analytical Methods, 7(8), 3559–3565. doi: 10.1039/c5ay00404g
  • Chen, X., Li, Z., Guo, J., Li, D., Gao, H., Wang, Y., & Xu, C. (2017a). Simultaneous screening for marbofloxacin and ofloxacin residues in animal-derived foods using an indirect competitive immunoassay. Food and Agricultural Immunology, 28(3), 489–499. doi: 10.1080/09540105.2017.1297780
  • Chen, Y., Liu, L., Xu, L., Song, S., Kuang, H., Cui, G., & Xu, C. (2017b). Gold immunochromatographic sensor for the rapid detection of twenty-six sulfonamides in foods. Nano Research, 10(8), 2833–2844. doi: 10.1007/s12274-017-1490-x
  • Chen, X., Xu, L., Ma, W., Liu, L., Kuang, H., Wang, L., & Xu, C. (2014). General immunoassay for pyrethroids based on a monoclonal antibody. Food and Agricultural Immunology, 25(3), 341–349. doi: 10.1080/09540105.2013.794328
  • Danks, C., Chaudhry, M. Q., Parker, L., Barker, I., & Banks, J. N. (2001). Development and validation of an immunoassay for the determination of tebuconazole residues in cereal crops. Food and Agricultural Immunology, 13, 151–159. doi: 10.1080/09540100120075808
  • Deng, Z., Hu, J., Qin, D., & Li, H. (2010). Simultaneous analysis of hexaconazole, myclobutanil, and tebuconazole residues in apples and soil by SPE clean-up and GC with nitrogen-phosphorus detection. Chromatographia, 71(7-8), 679–684. doi: 10.1365/s10337-010-1505-1
  • Dong, B., & Hu, J. (2014). Dissipation and residue determination of fluopyram and tebuconazole residues in watermelon and soil by GC-MS. International Journal of Environmental Analytical Chemistry, 94(5), 493–505. doi: 10.1080/03067319.2013.841152
  • Guo, L., Song, S., Liu, L., Peng, J., Kuang, H., & Xu, C. (2015). Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples. Biomedical Chromatography, 29(9), 1432–1439. doi: 10.1002/bmc.3442
  • Kahle, M., Buerge, I. J., Hauser, A., Mueller, M. D., & Poiger, T. (2008). Azole fungicides: Occurrence and fate in wastewater and surface waters. Environmental Science & Technology, 42(19), 7193–7200. doi: 10.1021/es8009309
  • Li, Z., Wang, Y., Li, D., Chen, X., Li, Z., Gao, H., & Hou, Y. (2017). Development of an indirect competitive enzyme-linked immunosorbent assay for screening ethopabate residue in chicken muscle and liver. Rsc Advances, 7(57), 36072–36080. doi:10.1039/c6ra20736g doi: 10.1039/C6RA20736G
  • Liu, X., Wang, X., Xu, J., Dong, F., Song, W., & Zheng, Y. (2011). Determination of tebuconazole, trifloxystrobin and its metabolite in fruit and vegetables by a Quick, Easy, Cheap, effective, Rugged and Safe (QuEChERS) method using gas chromatography with a nitrogen-phosphorus detector and ion trap mass spectrometry. Biomedical Chromatography, 25(10), 1081–1090. doi: 10.1002/bmc.1575
  • Liu, L., Yan, H., Zhang, X., Kuang, H., & Xu, C. (2015). Development of an anti-chlorothalonil monoclonal antibody based on a novel designed hapten. Food and Agricultural Immunology, 26(3), 410–419. doi: 10.1080/09540105.2014.938319
  • Marin, P., de Ory, A., Cruz, A., Magan, N., & Teresa Gonzalez-Jaen, M. (2013). Potential effects of environmental conditions on the efficiency of the antifungal tebuconazole controlling Fusarium verticillioides and Fusarium proliferatum growth rate and fumonisin biosynthesis. International Journal of Food Microbiology, 165(3), 251–258. doi: 10.1016/j.ijfoodmicro.2013.05.022
  • Mercader, J. V., Agullo, C., Abad-Somovilla, A., & Abad-Fuentes, A. (2011). Synthesis of site-heterologous haptens for high-affinity anti-pyraclostrobin antibody generation. Organic & Biomolecular Chemistry, 9(5), 1443–1453. doi: 10.1039/c0ob00686f
  • Munitz, M. S., Medina, M. B., & Montti, M. I. T. (2017). Development and validation of an SPME-GC method for a degradation kinetics study of propiconazole I, propiconazole II and tebuconazole in blueberries in Concordia, the main production area of Argentina. Food Additives and Contaminants Part a-Chemistry Analysis Control Exposure & Risk Assessment, 34(5), 793–799. doi: 10.1080/19440049.2017.1301682
  • Peng, J., Liu, L., Xu, L., Song, S., Kuang, H., Cui, G., & Xu, C. (2017). Gold nanoparticle-based paper sensor for ultrasensitive and multiple detection of 32 (fluoro)quinolones by one monoclonal antibody. Nano Research, 10(1), 108–120. doi: 10.1007/s12274-016-1270-z
  • Pinacho, D. G., Sanchez-Baeza, F., & Marco, M. P. (2012). Molecular modeling assisted hapten design to produce broad selectivity antibodies for fluoroquinolone antibiotics. Analytical Chemistry, 84(10), 4527–4534. doi:10.1021/ac300263m doi: 10.1021/ac300263m
  • Poulsen, R., Luong, X., Hansen, M., Styrishave, B., & Hayes, T. (2015). Tebuconazole disrupts steroidogenesis in Xenopus laevis. Aquatic Toxicology, 168, 28–37. doi: 10.1016/j.aquatox.2015.09.008
  • Saha, A., Pipariya, A., & Bhaduri, D. (2016). Enzymatic activities and microbial biomass in peanut field soil as affected by the foliar application of tebuconazole. Environmental Earth Sciences, 75(7), 558–571. doi: 10.1007/s12665-015-5116-x
  • Singh, S. K., Padmaja, P., & Pandey, S. Y. (2014). Fast ultrasound-assisted extraction followed by capillary gas chromatography combined with nitrogen-phosphorous selective detector for the trace determination of tebuconazole in garlic, soil and water samples. Journal of Separation Science, 37(11), 1315–1321. doi: 10.1002/jssc.201400006
  • Sinha, S. N., Bhatnagar, V. K., Doctor, P., Toteja, G. S., Agnihotri, N. P., & Kalra, R. L. (2011). A novel method for pesticide analysis in refined sugar samples using a gas chromatography-mass spectrometer (GC-MS/MS) and simple solvent extraction method. Food Chemistry, 126(1), 379–386. doi: 10.1016/j.foodchem.2010.10.110
  • Vass, M., Diblikova, I., Cernoch, I., & Franek, M. (2008). ELISA for semicarbazide and its application for screening in food contamination. Analytica Chimica Acta, 608(1), 86–94. doi: 10.1016/j.aca.2007.11.052
  • Wang, Y., Li, Z., Pei, Y., Li, Q., Sun, Y., Yang, J., & Hu, X. (2017). Establishment of a lateral flow colloidal gold immunoassay strip for the rapid detection of soybean allergen beta-conglycinin. Food Analytical Methods, 10(7), 2429–2435. doi: 10.1007/s12161-017-0800-y
  • Wang, C., Wu, Q., Wu, C., & Wang, Z. (2011). Application of dispersion-solidification liquid-liquid microextraction for the determination of triazole fungicides in environmental water samples by high-performance liquid chromatography. Journal of Hazardous Materials, 185(1), 71–76. doi: 10.1016/j.jhazmat.2010.08.124
  • Wang, H., Yang, X., Hu, L., Gao, H., Lu, R., Zhang, S., & Zhou, W. (2016). Detection of triazole pesticides in environmental water and juice samples using dispersive liquid-liquid microextraction with solidified sedimentary ionic liquids. New Journal of Chemistry, 40(5), 4696–4704. doi: 10.1039/c5nj03376d
  • Woodward, J. E., Brenneman, T. B., Kemerait, R. C., Jr., Culbreath, A. K., & Smith, N. B. (2010). Management of peanut diseases with reduced input fungicide programs in fields with varying levels of disease risk. Crop Protection, 29(3), 222-229. doi:10.1016/j.cropro.2009.12.008.
  • Wu, Y. t., Zhang, Y.-h., Zhang, M., Liu, F., Wan, Y. c., Huang, Z., & Lu, B. (2014). Selective and simultaneous determination of trace bisphenol A and tebuconazole in vegetable and juice samples by membrane-based molecularly imprinted solid-phase extraction and HPLC. Food Chemistry, 164, 527–535. doi:10.1016/j.foodchem.2014.05.071.
  • Yu, L., Chen, M., Liu, Y., Gui, W., & Zhu, G. (2013). Thyroid endocrine disruption in zebrafish larvae following exposure to hexaconazole and tebuconazole. Aquatic Toxicology, 138, 35–42. doi: 10.1016/j.aquatox.2013.04.001
  • Zhou, J., Zhang, J., Li, F., & Liu, J. (2016). Triazole fungicide tebuconazole disrupts human placental trophoblast cell functions. Journal of Hazardous Materials, 308, 294–302. doi: 10.1016/j.jhazmat.2016.01.055