1,149
Views
3
CrossRef citations to date
0
Altmetric
Articles

Establishment of an ultrasensitive indirect competitive time-resolved fluoroimmunoassay for vancomycin determination

ORCID Icon, , , &
Pages 862-877 | Received 10 Jun 2019, Accepted 27 Jun 2019, Published online: 21 Jul 2019

References

  • Acharya, D., Bastola, P., Le, L., Paul, A. M., Fernandez, E., Diamond, M. S., … Bai, F. (2016). An ultrasensitive electrogenerated chemiluminescence-based immunoassay for specific detection of Zika virus. Scientific Reports, 6, 1. doi: 10.1038/s41598-016-0001-8
  • Aga, D. S., Lenczewski, M., Snow, D., Muurinen, J., Sallach, J. B., & Wallace, J. S. (2016). Challenges in the measurement of antibiotics and in evaluating their impacts in agroecosystems: A critical review. Journal of Environment Quality, 45(2), 407–419. doi: 10.2134/jeq2015.07.0393
  • Aldawsari, H. M., & Hosny, K. M. (2018). Solid lipid nanoparticles of vancomycin loaded with ellagic acid as a tool for overcoming nephrotoxic side effects: Preparation, characterization, and nephrotoxicity evaluation. Journal of Drug Delivery Science and Technology, 45, 76–80. doi: 10.1016/j.jddst.2018.02.016
  • Alvarez, R., Lopez Cortes, L. E., Molina, J., Cisneros, J. M., & Pachon, J. (2016). Optimizing the clinical use of vancomycin. Antimicrobial Agents and Chemotherapy, 60(5), 2601–2609. doi: 10.1128/AAC.03147-14
  • Bhattacharyya, D., Banerjee, J., Bandyopadhyay, S., Mondal, B., Nanda, P. K., Samanta, I., … Bandyopadhyay, S. (2016). First report on vancomycin-resistant staphylococcus aureus in bovine and caprine milk. Microbial Drug Resistance, 22(8), 675–681. doi: 10.1089/mdr.2015.0330
  • Deng, L.-H., Dai, J.-B., Xu, Z.-L., Yang, J.-Y., Wang, H., Xiao, Z.-L., … Shen, Y.-D. (2016). Application of time-resolved fluroimmunoassay for determination of furaltadone metabolite 3-amino-5-morpholinomethyl-2-oxazolidinone. Chinese Journal of Analytical Chemistry, 44(8), 1286–1290. doi: 10.1016/S1872-2040(16)60951-9
  • Dong, S., Zhang, C., Zhang, X., Liu, Y., Zhong, J., Xie, Y., … Liu, X. (2016). Production and characterization of monoclonal antibody broadly recognizing Cry1 toxins by use of designed polypeptide as hapten. Analytical Chemistry, 88(14), 7023–7032. doi: 10.1021/acs.analchem.6b00429
  • Eivazi, S., Majidi, J., Aghebati Maleki, L., Abdolalizadeh, J., Yousefi, M., Ahmadi, M., … Zolali, E. (2015). Production and purification of a polyclonal antibody against purified mouse IgG2b in rabbits towards designing mouse monoclonal isotyping kits. Advanced Pharmaceutical Bulletin, 5(1), 109–113.
  • Fan, W., Tang, Q., Shen, C., Qin, D., Lu, C., & Yan, Q. (2015). Preparation and characterization of polyclonal antibody against Kaposi’s sarcoma-associated herpesvirus lytic gene encoding RTA. Folia Microbiologica, 60(6), 473–481. doi: 10.1007/s12223-015-0387-x
  • Gefen, T., Vaya, J., Khatib, S., Rapoport, I., Lupo, M., Barnea, E., … Pitcovski, J. (2015). The effect of haptens on protein-carrier immunogenicity. Immunology, 144(1), 116–126. doi: 10.1111/imm.12356
  • Grenni, P., Ancona, V., & Barra Caracciolo, A. (2018). Ecological effects of antibiotics on natural ecosystems: A review. Microchemical Journal, 136, 25–39. doi: 10.1016/j.microc.2017.02.006
  • He, J., Tao, X., Wang, K., Ding, G., Li, J., Li, Q. X., … Xu, T. (2019). One-step immunoassay for the insecticide carbaryl using a chicken single-chain variable fragment (scFv) fused to alkaline phosphatase. Analytical Biochemistry, 572, 9–15. doi: 10.1016/j.ab.2019.02.022
  • Hu, S., Li, D., Huang, Z., Xing, K., Chen, Y., Peng, J., & Lai, W. (2018a). Ultra-sensitive method based on time-resolved fluorescence immunoassay for detection of sulfamethazine in raw milk. Food and Agricultural Immunology, 29(1), 1137–1149. doi: 10.1080/09540105.2018.1520816
  • Hu, X., Yao, J., Wang, F., Yin, M., Sun, Y., Hu, M., … Zhang, G. (2018b). Eu(3+) -labeled IgG-based time-resolved fluoroimmunoassay for highly sensitive detection of aflatoxin B1 in feed. Journal of the Science of Food and Agriculture, 98(2), 674–680. doi: 10.1002/jsfa.8514
  • Kavanagh, O., Elliott, C. T., & Campbell, K. (2015). Progress in the development of immunoanalytical methods incorporating recombinant antibodies to small molecular weight biotoxins. Analytical and Bioanalytical Chemistry, 407(10), 2749–2770. doi: 10.1007/s00216-015-8502-z
  • Kong, D., Xie, Z., Liu, L., Song, S., Kuang, H., & Xu, C. (2017). Development of ic-ELISA and lateral-flow immunochromatographic assay strip for the detection of vancomycin in raw milk and animal feed. Food and Agricultural Immunology, 28(3), 414–426. doi: 10.1080/09540105.2017.1293014
  • Lee, B.-L., Asakura, K., Azechi, T., Sasano, H., Matsui, H., Hanaki, H., … Yahara, K. (2018). Rapid and easy detection of low-level resistance to vancomycin in methicillin-resistant Staphylococcus aureus by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Plos One, 13(3), e0194212. doi: 10.1371/journal.pone.0194212
  • Li, B., Yuan, Z., Hung, H.-C., Ma, J., Jain, P., Tsao, C., … Jiang, S. (2018). Revealing the immunogenic risk of polymers. Angewandte Chemie International Edition, 57(42), 13873–13876. doi: 10.1002/anie.201808615
  • Li, M., Zhang, Y., Xue, Y., Hong, X., Cui, Y., Liu, Z., & Du, D. (2017). Simultaneous determination of β2-agonists clenbuterol and salbutamol in water and swine feed samples by dual-labeled time-resolved fluoroimmunoassay. Food Control, 73, 1039–1044. doi: 10.1016/j.foodcont.2016.10.019
  • Liang, W., Liu, S., Liu, Z., Li, D., Wang, L., Hao, C., & He, Y. (2015). Electron transfer and fluorescence “turn-off” based CdTe quantum dots for vancomycin detection at nanogram level in aqueous serum media. New Journal of Chemistry, 39(6), 4774–4782. doi: 10.1039/C4NJ01764A
  • Limbu, S. M., Zhou, L., Sun, S.-X., Zhang, M.-L., & Du, Z.-Y. (2018). Chronic exposure to low environmental concentrations and legal aquaculture doses of antibiotics cause systemic adverse effects in Nile tilapia and provoke differential human health risk. Environment International, 115, 205–219. doi: 10.1016/j.envint.2018.03.034
  • Liu, Y., Lin, M., Zhang, X., Xu, C., Jiao, L., Zhong, J., … Liu, X. (2016). Applications of mutagenesis methods on affinity maturation of antibodies in vitro. Journal of Zhejiang University, 42(1), 1–7. in chinese.
  • Liu, X., Steele, J. C., & Meng, X. Z. (2017). Usage, residue, and human health risk of antibiotics in Chinese aquaculture: A review. Environmental Pollution, 223, 161–169. doi: 10.1016/j.envpol.2017.01.003
  • Liu, Y., Wu, A., Hu, J., Lin, M., Wen, M., Zhang, X., … Liu, X. (2015). Detection of 3-phenoxybenzoic acid in river water with a colloidal gold-based lateral flow immunoassay. Analytical Biochemistry, 483, 7–11. doi: 10.1016/j.ab.2015.04.022
  • Liu, Z., Yan, X., Hua, X., & Wang, M. (2013). Time-resolved fluoroimmunoassay for quantitative determination of thiacloprid in agricultural samples. Analytical Methods, 5(14), 3572–3576. doi: 10.1039/c3ay00033h
  • Lu, X., Jiang, D. J., Yan, J. X., Ma, Z. E., Luo, X. E., Wei, T. L., … He, Q. H. (2018). An ultrasensitive electrochemical immunosensor for Cry1Ab based on phage displayed peptides. Talanta, 179, 646–651. doi: 10.1016/j.talanta.2017.11.032
  • Luo, L., Lei, H. T., Yang, J. Y., Liu, G. L., Sun, Y. M., Bai, W. D., … Xu, Z. L. (2017). Development of an indirect ELISA for the determination of ethyl carbamate in Chinese rice wine. Analytica Chimica Acta, 950, 162–169. doi: 10.1016/j.aca.2016.11.008
  • Mehlhorn, A., Rahimi, P., & Joseph, Y. (2018). Aptamer-based biosensors for antibiotic detection: A review. Biosensors (Basel), 8(2).
  • Ni, T., Peng, D., Wang, Y., Pan, Y., Xie, S., Chen, D., … Yuan, Z. (2019). Development of a broad-spectrum monoclonal antibody-based indirect competitive enzyme-linked immunosorbent assay for the multi-residue detection of avermectins in edible animal tissues and milk. Food Chemistry, 286, 234–240. doi: 10.1016/j.foodchem.2019.02.011
  • Omara, S. T. (2017). MIC and MBC of honey and gold nanoparticles against methicillin-resistant (MRSA) and vancomycin-resistant (VRSA) coagulase-positive S. aureus isolated from contagious bovine clinical mastitis. Journal of Genetic Engineering and Biotechnology, 15(1), 219–230. doi: 10.1016/j.jgeb.2017.02.010
  • Ruano-Gallego, D., Fraile, S., Gutierrez, C., & Fernandez, L. A. (2019). Screening and purification of nanobodies from E. coli culture supernatants using the hemolysin secretion system. Microbial Cell Factories, 18(1), 47. doi: 10.1186/s12934-019-1094-0
  • Sheng, E., Shi, H., Zhou, L., Hua, X., Feng, L., Yu, T., & Wang, M. (2016). Dual-labeled time-resolved fluoroimmunoassay for simultaneous detection of clothianidin and diniconazole in agricultural samples. Food Chemistry, 192, 525–530. doi: 10.1016/j.foodchem.2015.07.023
  • Sheng, Y., & Zhou, B. (2017). High-throughput determination of vancomycin in human plasma by a cost-effective system of two-dimensional liquid chromatography. Journal of Chromatography A, 1499, 48–56. doi: 10.1016/j.chroma.2017.02.061
  • Shi, Q., Huang, J., Sun, Y., Yin, M., Hu, M., Hu, X., … Zhang, G. (2018). Utilization of a lateral flow colloidal gold immunoassay strip based on surface-enhanced Raman spectroscopy for ultrasensitive detection of antibiotics in milk. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 197, 107–113. doi: 10.1016/j.saa.2017.11.045
  • Talib, N. A. A., Salam, F., & Sulaiman, Y. (2018). Development of polyclonal antibody against clenbuterol for immunoassay application. Molecules, 23, 4.
  • Usman, M., & Hempel, G. (2016). Development and validation of an HPLC method for the determination of vancomycin in human plasma and its comparison with an immunoassay (PETINIA). Springerplus, 5, 124. doi: 10.1186/s40064-016-1778-4
  • Wang, J., Peng, T., Zhang, X., Yao, K., Ke, Y., Shao, B., … Jiang, H. (2018). A novel hapten and monoclonal antibody-based indirect competitive ELISA for simultaneous analysis of alternariol and alternariol monomethyl ether in wheat. Food Control, 94, 65–70. doi: 10.1016/j.foodcont.2018.06.027
  • Watanabe, E., Miyake, S., & Yogo, Y. (2013). Review of enzyme-linked immunosorbent assays (ELISAs) for analyses of neonicotinoid insecticides in agro-environments. Journal of Agricultural and Food Chemistry, 61(51), 12459–12472. doi: 10.1021/jf403801h
  • Xu, C., Liu, X., Zhang, C., Zhang, X., Zhong, J., Liu, Y., … Liu, X. (2017). Establishment of a sensitive time-resolved fluoroimmunoassay for detection of Bacillus thuringiensis Cry1Ie toxin based nanobody from a phage display library. Analytical Biochemistry, 518, 53–59. doi: 10.1016/j.ab.2016.11.006
  • Xu, C., Miao, W., He, Y., Zu, Y., Liu, X., Li, J., & Liu, X. (2019). Construction of an immunized rabbit phage display antibody library for screening microcystin-LR high sensitive single-chain antibody. International Journal of Biological Macromolecules, 123, 369–378. doi: 10.1016/j.ijbiomac.2018.11.122
  • Xu, F., Ren, K., Yang, Y.-z., Guo, J.-p., Ma, G.-p., Liu, Y.-m., … Li, X.-b. (2015). Immunoassay of chemical contaminants in milk: A review. Journal of Integrative Agriculture, 14(11), 2282–2295. doi: 10.1016/S2095-3119(15)61121-2
  • Xu, C., Yang, Y., Liu, L., Li, J., Liu, X., Zhang, X., … Liu, X. (2018). Microcystin-LR nanobody screening from an alpaca phage display nanobody library and its expression and application. Ecotoxicology and Environmental Safety, 151, 220–227. doi: 10.1016/j.ecoenv.2018.01.003
  • Yang, S., Ouyang, H., Su, X., Gao, H., Kong, W., Wang, M., … Fu, Z. (2016). Dual-recognition detection of staphylococcus aureus using vancomycin-functionalized magnetic beads as concentration carriers. Biosensors and Bioelectronics, 78, 174–180. doi: 10.1016/j.bios.2015.11.041
  • Yao, C.-Y., Xu, Z.-L., Wang, H., Zhu, F., Luo, L., Yang, J.-Y., … Shen, Y.-D. (2019). High affinity antibody based on a rationally designed hapten and development of a chemiluminescence enzyme immunoassay for quantification of alternariol in fruit juice, maize and flour. Food Chemistry, 283, 359–366. doi: 10.1016/j.foodchem.2018.12.127
  • You, X., Li, Y., Li, B., & Ma, J. (2016). Gold nanoclusters-based chemiluminescence resonance energy transfer method for sensitive and label-free detection of trypsin. Talanta, 147, 63–68. doi: 10.1016/j.talanta.2015.09.033
  • Zhang, X., He, K., Zhao, R., Wang, L., & Jin, Y. (2016). Cloning of scFv from hybridomas using a rational strategy: Application as a receptor to sensitive detection microcystin-LR in water. Chemosphere, 160, 230–236. doi: 10.1016/j.chemosphere.2016.06.084
  • Zhang, Y., Li, X. Q., Li, H. M., Zhang, Q. H., Gao, Y., & Li, X. J. (2019). Antibiotic residues in honey: A review on analytical methods by liquid chromatography tandem mass spectrometry. TrAC Trends in Analytical Chemistry, 110, 344–356. doi: 10.1016/j.trac.2018.11.015
  • Zhang, Z., Tang, X., Wang, D., Zhang, Q., Li, P., & Ding, X. (2015). Rapid on-site sensing aflatoxin B1 in food and feed via a chromatographic time-resolved fluoroimmunoassay. PLoS One, 10(4), e0123266. doi: 10.1371/journal.pone.0123266
  • Zhao, Y., Liang, Y., Liu, Y., Zhang, X., Hu, X., Tu, S., … Tu, K. (2016). Isolation of broad-specificity domain antibody from phage library for development of pyrethroid immunoassay. Analytical Biochemistry, 502, 1–7. doi: 10.1016/j.ab.2016.02.020
  • Zhou, B., Zhang, J., Fan, J., Zhu, L., Zhang, Y., Jin, J., & Huang, B. (2015). A new sensitive method for the detection of chloramphenicol in food using time-resolved fluoroimmunoassay. European Food Research and Technology, 240(3), 619–625. doi: 10.1007/s00217-014-2363-0