1,805
Views
16
CrossRef citations to date
0
Altmetric
Articles

A rapid competitive ELISA assay of Okadaic acid level based on epoxy-functionalized magnetic beads

, , , , , , , ORCID Icon & show all
Pages 1286-1302 | Received 02 Oct 2019, Accepted 31 Oct 2019, Published online: 14 Nov 2019

References

  • Agrawal, A., Sathe, T., & Nie, S. (2007). Single-bead immunoassays using magnetic microparticles and spectral-shifting quantum dots. Journal of Agricultural and Food Chemistry, 55(10), 3778–3782. doi: 10.1021/jf0635006
  • Deng, H., Li, X. L., Peng, Q., Wang, X., Chen, J. P., & Li, Y. D. (2005). Monodisperse magnetic single-crystal ferrite microspheres. Angewandte Chemie-International Edition, 44(18), 2782–2785. doi: 10.1002/anie.200462551
  • Dominguez, R. B., Hayat, A., Sassolas, A., Alonso, G. A., Munoz, R., & Marty, J. L. (2012). Automated flow-through amperometric immunosensor for highly sensitive and on-line detection of Okadaic acid in mussel sample. Talanta, 99, 232–237. doi: 10.1016/j.talanta.2012.05.045
  • Eissa, M. M., Rahman, M. M., Zine, N., Jaffrezic, N., Errachid, A., Fessi, H., & Elaissari, A. (2013). Reactive magnetic poly(divinylbenzene-co-glycidyl methacrylate) colloidal particles for specific antigen detection using microcontact printing technique. Acta Biomaterialia, 9(3), 5573–5582. doi: 10.1016/j.actbio.2012.10.027
  • Garthwaite, I., Ross, K. M., Miles, C. O., Briggs, L. R., Towers, N. R., Borrell, T., & Busby, P. (2001). Integrated enzyme-linked immunosorbent assay screening system for amnesic, neurotoxic, diarrhetic, and paralytic shellfish poisoning toxins found in New Zealand. Journal of Aoac International, 84(5), 1643–1648.
  • Hayat, A., Barthelmebs, L., & Marty, J.-L. (2011). Enzyme-linked immunosensor based on super paramagnetic nanobeads for easy and rapid detection of Okadaic acid. Analytica Chimica Acta, 690(2), 248–252. doi: 10.1016/j.aca.2011.02.031
  • Hayat, A., Barthelmebs, L., Sassolas, A., & Marty, J.-L. (2012). Development of a novel label-free amperometric immunosensor for the detection of Okadaic acid. Analytica Chimica Acta, 724, 92–97. doi: 10.1016/j.aca.2012.02.035
  • Iype, T., Thomas, J., Mohan, S., Johnson, K. K., George, L. E., Ambattu, L. A., … Ramchand, C. N. (2017). A novel method for immobilization of proteins via entrapment of magnetic nanoparticles through epoxy cross-linking. Analytical Biochemistry, 519, 42–50. doi: 10.1016/j.ab.2016.12.007
  • Jamshaid, T., Tenorio Neto, E. T., Eissa, M. M., Zine, N., Kunita, M. H., El-Salhi, A. E., & Elaissari, A. (2016). Magnetic particles: From preparation to lab-on-a-chip, biosensors, microsystems and microfluidics applications. Trac-Trends in Analytical Chemistry, 79, 344–362. doi: 10.1016/j.trac.2015.10.022
  • Jawaid, W., Meneely, J. P., Campbell, K., Melville, K., Holmes, S. J., Rice, J., & Elliott, C. T. (2015). Development and validation of a lateral flow immunoassay for the rapid screening of Okadaic acid and all dinophysis toxins from shellfish extracts. Journal of Agricultural and Food Chemistry, 63(38), 8574–8583. doi: 10.1021/acs.jafc.5b01254
  • Johnson, S., Harrison, K., & Turner, A. D. (2016). Application of rapid test kits for the determination of diarrhetic shellfish poisoning (DSP) toxins in bivalve molluscs from Great Britain. Toxicon, 111, 121–129. doi: 10.1016/j.toxicon.2016.01.052
  • Kolosova, A. Y., Shim, W. B., Yang, Z. Y., Eremin, S. A., & Chung, D. H. (2006). Direct competitive ELISA based on a monoclonal antibody for detection of aflatoxin B-1. Stabilization of ELISA kit components and application to grain samples. Analytical and Bioanalytical Chemistry, 384(1), 286–294. doi: 10.1007/s00216-005-0103-9
  • Li, H., Xiya, S., Zhang, X., Li, C., Dong, B., Mujtaba, M. G., … Wang, Z. (2018). Generic Hapten synthesis, broad-specificity monoclonal antibodies preparation, and ultrasensitive ELISA for five antibacterial synergists in chicken and milk. Journal of Agricultural and Food Chemistry, 66(42), 11170–11179. doi: 10.1021/acs.jafc.8b03834
  • Lin, C., Liu, Z.-S., Tan, C.-Y., Guo, Y.-P., Li, L., Ren, H.-L., … Lu, S.-Y. (2015). Contamination of commercially available seafood by key diarrhetic shellfish poisons along the coast of China. Environmental Science and Pollution Research, 22(2), 1545–1553. doi: 10.1007/s11356-014-3494-3
  • Lin, C., Liu, Z.-S., Wang, D.-X., Ren, H.-L., Li, Y.-S., Hu, P., … Lu, S.-Y. (2014). Sensitive and reliable micro-plate chemiluminescence enzyme immunoassay for Okadaic acid in shellfish. Analytical Methods, 6(18), 7142–7148. doi: 10.1039/C4AY01063A
  • Liu, B.-H., Hung, C.-T., Lu, C.-C., Chou, H.-N., & Yu, F.-Y. (2014). Production of monoclonal antibody for Okadaic acid and its utilization in an ultrasensitive enzyme-linked immunosorbent assay and one-step Immunochromatographic strip. Journal of Agricultural and Food Chemistry, 62(6), 1254–1260. doi: 10.1021/jf404827s
  • Llamas, N. M., Stewart, L., Fodey, T., Higgins, H. C., Velasco, M. L. R., Botana, L. M., & Elliott, C. T. (2007). Development of a novel immunobiosensor method for the rapid detection of Okadaic acid contamination in shellfish extracts. Analytical and Bioanalytical Chemistry, 389(2), 581–587. doi: 10.1007/s00216-007-1444-3
  • Lu, S.-Y., Lin, C., Li, Y.-S., Zhou, Y., Meng, X.-M., Yu, S.-Y., … Liu, Z.-S. (2012). A screening lateral flow immunochromatographic assay for on-site detection of Okadaic acid in shellfish products. Analytical Biochemistry, 422(2), 59–65. doi: 10.1016/j.ab.2011.12.039
  • Lu, S.-Y., Zhou, Y., Li, Y.-S., Lin, C., Meng, X.-M., Yan, D.-M., … Ren, H.-L. (2012). Production of monoclonal antibody and application in indirect competitive ELISA for detecting Okadaic acid and dinophytoxin-1 in seafood. Environmental Science and Pollution Research, 19(7), 2619–2626. doi: 10.1007/s11356-012-0819-y
  • McNabb, P., Selwood, A. I., & Holland, P. T. (2005). Multiresidue method for determination of algal toxins in shellfish: Single-laboratory validation and interlaboratory study. Journal of Aoac International, 88(3), 761–772.
  • Pan, Y., Wei, X., Liang, T., Zhou, J., Wan, H., Hu, N., & Wang, P. (2018). A magnetic beads-based portable flow cytometry immunosensor for in-situ detection of marine biotoxin. Biomedical Microdevices, 20, 3. doi: 10.1007/s10544-018-0304-6
  • Paredes, I., Rietjens, I. M. C. M., Vieites, J. M., & Cabado, A. G. (2011). Update of risk assessments of main marine biotoxins in the European Union. Toxicon, 58(4), 336–354. doi: 10.1016/j.toxicon.2011.07.001
  • Pleadin, J., Vulic, A., Persi, N., Skrivanko, M., Capek, B., & Cvetnic, Z. (2014). Aflatoxin B-1 occurrence in maize sampled from Croatian farms and feed factories during 2013. Food Control, 40, 286–291. doi: 10.1016/j.foodcont.2013.12.022
  • Prassopoulou, E., Katikou, P., Georgantelis, D., & Kyritsakis, A. (2009). Detection of Okadaic acid and related esters in mussels during diarrhetic shellfish poisoning (DSP) episodes in Greece using the mouse bioassay, the PP2A inhibition assay and HPLC with fluorimetric detection. Toxicon, 53(2), 214–227. doi: 10.1016/j.toxicon.2008.11.003
  • Qi, D., Lu, J., Deng, C., & Zhang, X. (2009). Magnetically responsive Fe3O4@C@SnO2 core-shell microspheres: Synthesis, characterization and application in phosphoproteomics. Journal of Physical Chemistry C, 113(36), 15854–15861. doi: 10.1021/jp902959d
  • Radoi, A., Targa, M., Prieto-Simon, B., & Marty, J. L. (2008). Enzyme-linked immunosorbent assay (ELISA) based on superparamagnetic nanoparticles for aflatoxin M-1 detection. Talanta, 77(1), 138–143. doi: 10.1016/j.talanta.2008.05.048
  • Schneck, N. A., Phinney, K. W., Lee, S. B., & Lowenthal, M. S. (2016). Quantification of antibody coupled to magnetic particles by targeted mass spectrometry. Analytical and Bioanalytical Chemistry, 408(29), 8325–8332. doi: 10.1007/s00216-016-9948-3
  • Sevilla, M., & Fuertes, A. B. (2009). Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides. Chemistry-a European Journal, 15(16), 4195–4203. doi: 10.1002/chem.200802097
  • Stengel, D. B., & Connan, S. (2015). Marine Algae: A source of biomass for biotechnological applications. Natural Products From Marine Algae: Methods and Protocols, 1308, 1–37. doi: 10.1007/978-1-4939-2684-8_1
  • Su, K., Qiu, X., Fang, J., Zou, Q., & Wang, P. (2017). An improved efficient biochemical detection method to marine toxins with a smartphone-based portable system-Bionic e-Eye. Sensors and Actuators B-Chemical, 238, 1165–1172. doi: 10.1016/j.snb.2016.02.092
  • Suganuma, M., Fujiki, H., Suguri, H., Yoshizawa, S., Hirota, M., Nakayasu, M., … Sugimura, T. (1988). Okadaic acid-an additional non-phorbol-12-tetradecanoate-13-acetate-type tumor promoter. Proceedings of the National Academy of Sciences of the United States of America, 85(6), 1768–1771. doi: 10.1073/pnas.85.6.1768
  • Sun, X. M., & Li, Y. D. (2004). Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angewandte Chemie-International Edition, 43(5), 597–601. doi: 10.1002/anie.200352386
  • Teng, S. F., Sproule, K., Husain, A., & Lowe, C. R. (2000). Affinity chromatography on immobilized “biomimetic” ligands synthesis, immobilization and chromatographic assessment of an immunoglobulin G-binding ligand. Journal of Chromatography B-Analytical Technologies in the Biomedical and Life Sciences, 740(1), 1–15.
  • Tetala, K. K. R., & Vijayalakshmi, M. A. (2016). A review on recent developments for biomolecule separation at analytical scale using microfluidic devices. Analytica Chimica Acta, 906, 7–21. doi: 10.1016/j.aca.2015.11.037
  • Wang, L. Y., Bao, J., Wang, L., Zhang, F., & Li, Y. D. (2006). One-pot synthesis and bioapplication of amine-functionalized magnetite nanoparticles and hollow nanospheres. Chemistry-a European Journal, 12(24), 6341–6347. doi: 10.1002/chem.200501334
  • Wang, X., Niessner, R., Tang, D. P., & Knopp, D. (2016). Nanoparticle-based immunosensors and immunoassays for aflatoxins. Analytica Chimica Acta, 912, 10–23. doi: 10.1016/j.aca.2016.01.048
  • Wu, Z. Q., Wang, B. C., Sun, Y. B., & Liu, Y. (2015). Improvement of determination method of Okadaic acid in shellfish by liquid chromatography-tandem mass spectrometry. Journal of Food Safety and Quality, 6(1), 265–271.
  • Yakes, B. J., Buijs, J., Elliott, C. T., & Campbell, K. (2016). Surface plasmon resonance biosensing: Approaches for screening and characterising antibodies for food diagnostics. Talanta, 156, 55–63. doi: 10.1016/j.talanta.2016.05.008
  • Yang, S. T., Chen, S., Chang, Y. L., Cao, A. N., Liu, Y. F., & Wang, H. F. (2011). Removal of methylene blue from aqueous solution by graphene oxide. Journal of Colloid and Interface Science, 359(1), 24–29. doi: 10.1016/j.jcis.2011.02.064
  • Zendong, Z., McCarron, P., Herrenknecht, C., Sibat, M., Amzil, Z., Cole, R. B., & Hess, P. (2015). High resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels and passive samplers. Journal of Chromatography A, 1416, 10–21. doi: 10.1016/j.chroma.2015.08.064
  • Zhang, Z., Duan, H., Li, S., & Lin, Y. (2010). Assembly of magnetic nanospheres into one-dimensional nanostructured carbon hybrid materials. Langmuir, 26(9), 6676–6680. doi: 10.1021/la904010y
  • Zhang, Z., & Kong, J. (2011). Novel magnetic Fe3O4@C nanoparticles as adsorbents for removal of organic dyes from aqueous solution. Journal of Hazardous Materials, 193, 325–329. doi: 10.1016/j.jhazmat.2011.07.033