1,912
Views
18
CrossRef citations to date
0
Altmetric
Articles

Aggregation-induced emission-based competitive lateral flow immunoassay for rapid detection of sulfamethazine in honey

ORCID Icon, ORCID Icon, , , , & show all
Pages 1303-1317 | Received 09 Oct 2019, Accepted 02 Nov 2019, Published online: 14 Nov 2019

References

  • Adrian, J., Pasche, S., Diserens, J. M., Sanchez-Baeza, F., Gao, H., Marco, M. P., & Voirin, G. (2009). Waveguide interrogated optical immunosensor (WIOS) for detection of sulfonamide antibiotics in milk. Biosensors & Bioelectronics, 24, 3340–3346. doi: 10.1016/j.bios.2009.04.036
  • Barani, A., & Fallah, A. A. (2014). Occurrence of tetracyclines, sulfonamides, fluoroquinolones and florfenicol in farmed rainbow trout in Iran. Food and Agricultural Immunology, 26, 420–429. doi: 10.1080/09540105.2014.950199
  • Chen, Y. Q., Chen, Q., Han, M. M., Liu, J. Y., Zhao, P., He, L. D., … Zhang, L. Y. (2016). Near-infrared fluorescence-based multiplex lateral flow immunoassay for the simultaneous detection of four antibiotic residue families in milk. Biosensors & Bioelectronics, 79, 430–434. doi: 10.1016/j.bios.2015.12.062
  • Chen, Y. N., Guo, L. L., Liu, L. Q., Song, S. S., Kuang, H., & Xu, C. L. (2017). Ultrasensitive immunochromatographic strip for fast screening of 27 sulfonamides in honey and pork liver samples based on a monoclonal antibody. Journal of Agricultural and Food Chemistry, 65, 8248–8255. doi: 10.1021/acs.jafc.7b03190
  • Chen, J. B., Zhou, X. F., Zhang, Y. L., & Gao, H. P. (2012). Potential toxicity of sulfanilamide antibiotic: Binding of sulfamethazine to human serum albumin. Science of the Total Environment, 432, 269–274. doi: 10.1016/j.scitotenv.2012.06.003
  • Duan, Y. L., et al. (2016). Aggregation induced enhancement of linear and nonlinear optical emission from a hexaphenylene derivative. Advanced Functional Materials, 26, 8968–8977. doi: 10.1002/adfm.201602765
  • Eyken, A., Furlong, D., Arooni, S., Butterworth, F., Roy, J. F., Zweigenbaum, J., & Bayen, S. (2019). Direct injection high performance liquid chromatography coupled to data independent acquisition mass spectrometry for the screening of antibiotics in honey. Journal of Food and Drug Analysis, 27, 679–691. doi: 10.1016/j.jfda.2018.12.013
  • Galan-Malo, P., Pellicer, S., Perez, M. D., Sanchez, L., Razquin, P., & Mata, L. (2019). Development of a novel duplex lateral flow test for simultaneous detection of casein and beta-lactoglobulin in food. Food Chemistry, 293, 41–48. doi: 10.1016/j.foodchem.2019.04.039
  • He, B. S., & Du, G. G. (2018). Novel electrochemical aptasensor for ultrasensitive detection of sulfadimidine based on covalently linked multi-walled carbon nanotubes and in situ synthesized gold nanoparticle composites. Analytical and Bioanalytical Chemistry, 410, 2901–2910. doi: 10.1007/s00216-018-0970-5
  • Hu, S., Li, D. H., Huang, Z., Xing, K. Y., Chen, Y., Peng, J., & Lai, W. H. (2018). Ultra-sensitive method based on time-resolved fluorescence immunoassay for detection of sulfamethazine in raw milk. Food and Agricultural Immunology, 29, 1137–1149. doi: 10.1080/09540105.2018.1520816
  • Hu, L. M., Luo, K., Xia, J., Xu, G. M., Wu, C. H., Han, J. J., … Lai, W. H. (2017). Advantages of time-resolved fluorescent nanobeads compared with fluorescent submicrospheres, quantum dots, and colloidal gold as label in lateral flow assays for detection of ractopamine. Biosensors & Bioelectronics, 91, 95–103. doi: 10.1016/j.bios.2016.12.030
  • Huang, Z., Xiong, Z. J., Chen, Y., Hu, S., & Lai, W. H. (2019). Sensitive and matrix-tolerant lateral flow immunoassay based on fluorescent magnetic nanobeads for the detection of clenbuterol in swine urine. Journal of Agricultural and Food Chemistry, 67, 3028–3036. doi: 10.1021/acs.jafc.8b06449
  • Ibarra, I. S., Miranda, J. M., Rodriguez, J. A., Nebot, C., & Cepeda, A. (2014). Magnetic solid phase extraction followed by high-performance liquid chromatography for the determination of sulphonamides in milk samples. Food Chemistry, 157, 511–517. doi: 10.1016/j.foodchem.2014.02.069
  • Jiang, H., Zhang, W. J., Li, J., Nie, L. J., Wu, K. S., Duan, H., & Xiong, Y. H. (2018). Inner-filter effect based fluorescence-quenching immunochromotographic assay for sensitive detection of aflatoxin B1 in soybean sauce. Food Control, 94, 71–76. doi: 10.1016/j.foodcont.2018.06.030
  • Kadziński, L., Banasiuk, R., & Banecki, B. (2018). Determination of ten sulfonamides in honey using tetrahydrofuran salting out liquid liquid extraction and monolithic silica column. LWT, 96, 7–12. doi: 10.1016/j.lwt.2018.05.007
  • Karageorgou, E., Manousi, N., Samanidou, V., Kabir, A., & Furton, K. G. (2016). Fabric phase sorptive extraction for the fast isolation of sulfonamides residues from raw milk followed by high performance liquid chromatography with ultraviolet detection. Food Chemistry, 196, 428–436. doi: 10.1016/j.foodchem.2015.09.060
  • Kim, H. J., Jeong, M. H., Park, H. J., Kim, W. C., & Kim, J. E. (2016). Development of an immunoaffinity chromatography and HPLC-UV method for determination of 16 sulfonamides in feed. Food Chemistry, 196, 1144–1149. doi: 10.1016/j.foodchem.2015.10.014
  • Li, D. D., Liu, J. Z., Kwok, R. T. K., Liang, Z. Q., Tang, B. Z., & Yu, J. H. (2012). Supersensitive detection of explosives by recyclable AIE luminogen-functionalized mesoporous materials. Chemical Communications, 48, 7167–7169. doi: 10.1039/c2cc31890c
  • Liu, N. M., Xing, K. Y., Wang, C., Zhang, G. G., Yuan, M. F., Li, D. F., … Peng, J. (2018). Matrix effect of five kinds of meat on colloidal gold immunochromatographic assay for sulfamethazine detection. Analytical Methods, 10, 4505–4510. doi: 10.1039/C8AY01322E
  • Luis, R. D., Lavilla, M., Sánchez, L., Calvo, M., & Pérez, M. D. (2009). Development and evaluation of two ELISA formats for the detection of β-lactoglobulin in model processed and commercial foods. Food Control, 20, 643–647. doi: 10.1016/j.foodcont.2008.09.017
  • Luo, J. D., Xie, Z. L., Lam, J. W. Y., Cheng, L., Chen, H. Y., Qiu, C. F., … Tang, B. Z. (2001). Aggregation-induced emission of 1-methyl-1,2,3,4,5-pentaphenylsilole. Chemical Communications, 1740–1741. doi:10.1039/b105159h
  • Mei, J., Hong, Y. N., Lam, J. W. Y., Qin, A. J., Tang, Y. H., & Tang, B. Z. (2014). Aggregation-induced emission: The whole is more brilliant than the parts. Advanced Materials, 26, 5429–5479. doi: 10.1002/adma.201401356
  • Panigrahi, A., Sahu, B. P., Mandani, S., Nayak, D., Giri, S., & Sarma, T. K. (2019). AIE active fluorescent organic nanoaggregates for selective detection of phenolic-nitroaromatic explosives and cell imaging. Journal of Photochemistry and Photobiology A: Chemistry, 374, 194–205. doi: 10.1016/j.jphotochem.2019.01.029
  • Peng, D. P., Li, Z. Z., Wang, Y. L., Liu, Z. L., Sheng, F., & Yuan, Z. H. (2017). Enzyme-linked immunoassay based on imprinted microspheres for the detection of sulfamethazine residue. Journal of Chromatography A, 1506, 9–17. doi: 10.1016/j.chroma.2017.05.016
  • Raeisossadati, M. J., Danesh, N. M., Borna, F., Gholamzad, M., Ramezani, M., Abnous, K., & Taghdisi, S. M. (2016). Lateral flow based immunobiosensors for detection of food contaminants. Biosensors & Bioelectronics, 86, 235–246. doi: 10.1016/j.bios.2016.06.061
  • Reybroeck, W., Daeseleire, E., De Brabander, H. F., & Herman, L. (2012). Antimicrobials in beekeeping. Veterinary Microbiology, 158, 1–11. doi: 10.1016/j.vetmic.2012.01.012
  • Shao, B., Dong, D., Wu, Y. N., Hu, J. Y., Meng, J., Tu, X. M., & Xu, S. K. (2005). Simultaneous determination of 17 sulfonamide residues in porcine meat, kidney and liver by solid-phase extraction and liquid chromatography–tandem mass spectrometry. Analytica Chimica Acta, 546, 174–181. doi: 10.1016/j.aca.2005.05.007
  • Shi, C. Y., Deng, N., Liang, J. J., Zhou, K. N., Fu, Q. Q., & Tang, Y. (2015). A fluorescent polymer dots positive readout fluorescent quenching lateral flow sensor for ractopamine rapid detection. Analytica Chimica Acta, 854, 202–208. doi: 10.1016/j.aca.2014.11.005
  • Shim, W. B., Kim, J. S., Kim, M. G., & Chung, D. H. (2013). Rapid and sensitive immunochromatographic strip for on-site detection of sulfamethazine in meats and eggs. Journal of Food Science, 78, M1575–M1581. doi: 10.1111/1750-3841.12232
  • Su, R., Li, X. Y., Liu, W. L., Wang, X. H., & Yang, H. M. (2016). Headspace microextraction of sulfonamides from honey by hollow fibers coupled with ultrasonic nebulization. Journal of Agricultural and Food Chemistry, 64, 1627–1634. doi:10.1021/acs.jafc.5b05856
  • Turnipseed, S. B., Storey, J. M., Lohne, J. J., Andersen, W. C., Burger, R., Johnson, A. S., & Madson, M. R. (2017). Wide-scope screening method for multiclass veterinary drug residues in fish, shrimp, and eel using liquid chromatography-quadrupole high-resolution mass spectrometry. Journal of Agricultural and Food Chemistry, 65, 7252–7267. doi: 10.1021/acs.jafc.6b04717
  • Yang, L., Ni, H. J., Li, C. L., Zhang, X. Y., Wen, K., Ke, Y. B., … Wang, Z. H. (2019). Development of a highly specific chemiluminescence aptasensor for sulfamethazine detection in milk based on in vitro selected aptamers. Sensors and Actuators B: Chemical, 281, 801–811. doi: 10.1016/j.snb.2018.10.143
  • Zhang, G. G., Chen, M. H., Liu, D. F., Xiong, Y. H., Feng, R. H., Zhong, P. H., & Lai, W. H. (2016). Quantitative detection of β2-adrenergic agonists using fluorescence quenching by immunochromatographic assay. Analytical Methods, 8, 627–631. doi: 10.1039/c5ay02585k
  • Zhang, Y., Li, X. Q., Li, H. M., Zhang, Q. H., Gao, Y., & Li, X. J. (2019b). Antibiotic residues in honey: A review on analytical methods by liquid chromatography tandem mass spectrometry. TrAC Trends in Analytical Chemistry, 110, 344–356. doi: 10.1016/j.trac.2018.11.015
  • Zhang, G. G., Xu, S. L., Xiong, Y. H., Duan, H., Chen, W. Y., Li, X. M., … Lai, W. H. (2019a). Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay. Biosensors & Bioelectronics, 135, 173–180. doi: 10.1016/j.bios.2019.04.023