2,031
Views
19
CrossRef citations to date
0
Altmetric
Articles

Development of a fluorescent immunoassay strip for the rapid quantitative detection of cadmium in rice

, , , , &
Pages 501-512 | Received 12 Feb 2020, Accepted 26 Feb 2020, Published online: 02 Apr 2020

References

  • Arai, H., Nakamura, K., Yoshida, Y., & Tawarada, K. (2016). Development of quantitative immunochromatographic kit and visual screening immunoassay strip for cadmium. Analytical and Bioanalytical Chemistry, 408(22), 6063–6068. doi: 10.1007/s00216-016-9475-2
  • Bai, Y., Hu, J., Liu, S., Zhang, W., Zhang, J., He, J., … Wang, Z. (2017). Production of antibodies and development of an enzyme-linked immunosorbent assay for 17β-estradiol in milk. Food and Agricultural Immunology, 28(6), 1519–1529. doi: 10.1080/09540105.2017.1350833
  • Choi, S. H., Kim, J. Y., Mi Choi, E., Lee, M. Y., Yang, J. Y., Ho Lee, G., … Su Park, K. (2018). Heavy metal determination by inductively coupled plasma – mass spectrometry (ICP-MS) and direct mercury analysis (DMA) and arsenic mapping by femtosecond (fs) – laser ablation (LA) ICP-MS in Cereals. Analytical Letters, 52(3), 496–510. doi: 10.1080/00032719.2018.1471484
  • Guan, D., Guo, L., Liu, L., Kong, N., Kuang, H., & Xu, C. (2015). Development of an ELISA for nitrazepam based on a monoclonal antibody. Food and Agricultural Immunology, 26(5), 611–621. doi: 10.1080/09540105.2014.998637
  • Guo, L., Song, S., Liu, L., Peng, J., Kuang, H., & Xu, C. (2015). Comparsion of an immunochromatographic strip with ELISA for simultaneous detection of thiamphenicol, florfenicol and chloramphenicol in food samples. Biomedical Chromatography, 29(9), 1432–1439. doi: 10.1002/bmc.3442
  • Jiang, J., Li, Z., Wang, Y., Zhang, X., Yu, K., Zhang, H., … Li, N. (2020). Rapid determination of cadmium in rice by portable dielectric barrier discharge-atomic emission spectrometer. Food Chemistry, 310, 125824. doi: 10.1016/j.foodchem.2019.125824
  • Jin, X., He, R., Ju, X., Zhang, J., Wang, M., Xing, C., & Yuan, J. (2019). Development and optimization of an immunoassay for the detection of Hg(II) in lake water. Food Science & Nutrition, 7(5), 1615–1622. doi: 10.1002/fsn3.991
  • Khafaga, A. F., Abd El-Hack, M. E., Taha, A. E., Elnesr, S. S., & Alagawany, M. (2019). The potential modulatory role of herbal additives against Cd toxicity in human, animal, and poultry: A review. Environmental Science and Pollution Research, 26(5), 4588–4604. doi: 10.1007/s11356-018-4037-0
  • Kim, J. J., Kim, Y. S., & Kumar, V. (2019). Heavy metal toxicity: An update of chelating therapeutic strategies. Journal of Trace Elements in Medicine and Biology, 54, 226–231. doi: 10.1016/j.jtemb.2019.05.003
  • Le, T., Zhang, Z., Wu, J., Shi, H., & Cao, X. (2018). A fluorescent immunochromatographic strip test using a quantum dot-antibody probe for rapid and quantitative detection of 1-aminohydantoin in edible animal tissues. Analytical and Bioanalytical Chemistry, 410(2), 565–572. doi: 10.1007/s00216-017-0756-1
  • Li, F., Wang, J., Xu, L., Wang, S., Zhou, M., Yin, J., & Lu, A. (2018). Rapid Screening of cadmium in rice and identification of geographical origins by spectral method. International Journal of Environmental Research and Public Health, 15, 2.
  • Li, X., Hu, Y., Huo, T., & Xu, C. (2007). Comparison of the determination of chloramphenicol residues in aquaculture tissues by time-resolved fluoroimmunoassay and with liquid chromatography and tandem mass spectrometry. Food and Agricultural Immunology, 17(3-4), 191–199. doi: 10.1080/09540100601090349
  • Li, Y., Liu, L., Song, S., & Kuang, H. (2017). Development of a gold nanoparticle immunochromatographic assay for the on-site analysis of 6-benzylaminopurine residues in bean sprouts. Food and Agricultural Immunology, 29(1), 14–26. doi: 10.1080/09540105.2017.1354359
  • Liu, G., Wang, J., Li, Z., Liang, S., Liu, J., & Wang, X. (2009). Development of direct competitive enzyme-linked immunosorbent assay for the determination cadmium residue in farm produce. Applied Biochemistry and Biotechnology, 159(3), 708–717. doi: 10.1007/s12010-009-8539-6
  • Liu, Y., Xiao, T., Perkins, R. B., Zhu, J., Zhu, Z., Xiong, Y., & Ning, Z. (2017). Geogenic cadmium pollution and potential health risks, with emphasis on black shale. Journal of Geochemical Exploration, 176, 42–49. doi: 10.1016/j.gexplo.2016.04.004
  • Majdinasab, M., Sheikh-Zeinoddin, M., Soleimanian-Zad, S., Li, P., Zhang, Q., Li, X., … Li, J. (2015). A reliable and sensitive time-resolved fluorescent immunochromatographic assay (TRFICA) for ochratoxin A in agro-products. Food Control, 47, 126–134. doi: 10.1016/j.foodcont.2014.06.044
  • Moallem Bandani, H., Ali Malayeri, F., Donya, A., Majid, R., Entezari Heravi, R., Laleh, R., & Saeedeh, S. (2016). Determination of lead and cadmium in cow′s milk and elimination by using titanium dioxide nanoparticles. Nutrition and Food Sciences Research, 3(4), 57–62. doi: 10.18869/acadpub.nfsr.3.4.57
  • Qiao, B., Li, Y., Hu, P., Sun, Y., Si, Z., Lu, S., … Zhou, Y. (2018). EuNPs-MAb fluorescent probe based immunochromatographic strip for rapid and sensitive detection of fluorene. Sensors and Actuators B: Chemical, 262, 221–227. doi: 10.1016/j.snb.2018.01.231
  • Rafati Rahimzadeh, M., Rafati Rahimzadeh, M., Kazemi, S., & Moghadamnia, A. A. (2017). Cadmium toxicity and treatment: An update. Caspian Journal Of internal Medicine, 8(3), 135–145.
  • Remelli, M., Nurchi, V. M., Lachowicz, J. I., Medici, S., Zoroddu, M. A., & Peana, M. (2016). Competition between Cd(II) and other divalent transition metal ions during complex formation with amino acids, peptides, and chelating agents. Coordination Chemistry Reviews, 327-328, 55–69. doi: 10.1016/j.ccr.2016.07.004
  • Shen, X., Wu, X., Liu, L., & Kuang, H. (2019). Development of a colloidal gold immunoassay for the detection of four eugenol compounds in water. Food and Agricultural Immunology, 30(1), 1318–1331. doi: 10.1080/09540105.2019.1687658
  • Song, S., Zou, S., Zhu, J., Liu, L., & Kuang, H. (2017). Immunochromatographic paper sensor for ultrasensitive colorimetric detection of cadmium. Food and Agricultural Immunology, 29(1), 3–13. doi: 10.1080/09540105.2017.1354358
  • Wang, H., Guan, J., Liu, X., Shi, Y., Wu, Q., Luo, M., … Pan, Y. (2019). Rapid detection of avian leukosis virus using a fluorescent microsphere immunochromatographic test strip assay. Poultry Science, 98(12), 6492–6496. doi: 10.3382/ps/pez547
  • Wang, L., Chen, W., Ma, W., Liu, L., Ma, W., Zhao, Y., … Xu, C. (2011). Fluorescent strip sensor for rapid determination of toxins. Chem Commun (Camb), 47(5), 1574–1576. doi: 10.1039/C0CC04032K
  • Wang, Z., Wu, X., Liu, L., Xu, L., Kuang, H., & Xu, C. (2020). Rapid and sensitive detection of diclazuril in chicken samples using a gold nanoparticle-based lateral-flow strip. Food Chemistry, 312, 126116. doi: 10.1016/j.foodchem.2019.126116
  • Xie, Y., Wu, J., Shi, H., & Le, T. (2019). A fluorescent immunochromatographic strip using quantum dots for 3-amino-5-methylmorpholino-2-oxazolidinone (AMOZ) detection in edible animal tissues. Food and Agricultural Immunology, 30(1), 208–221. doi: 10.1080/09540105.2019.1566301
  • Xing, C., Hao, C., Liu, L., Xu, C., & Kuang, H. (2013). A highly sensitive enzyme-linked immunosorbent assay for copper(II) determination in drinking water. Food and Agricultural Immunology, 25(3), 432–442. doi: 10.1080/09540105.2013.821600
  • Xu, L., Xing, C., Liu, L., Song, S., Kuang, H., & Xu, C. (2016). Quick, easy, cheap, effective, rugged and safe strategy for quantifying cadmium polluted rice. Food and Agricultural Immunology, 27(6), 783–795. doi: 10.1080/09540105.2016.1160368
  • Yang, Y., Li, C., Wang, W., Dong, T., Xiong, Y., Shen, J., & Lai, W. (2015). A fluorescence immunochromatographic assay for rapid and sensitive detection of human prealbumin in serum. Analytical Methods, 7(20), 8683–8688. doi: 10.1039/C5AY01659B
  • Zeng, H., Zhai, X., Xie, M., & Liu, Q. (2018). Fluorescein Isothiocyanate labeling antigen-based immunoassay strip for rapid detection of Acidovorax citrulli. Plant Disease, 102(3), 527–532. doi: 10.1094/PDIS-06-17-0903-RE
  • Zhang, G. G., Xu, S. L., Xiong, Y. H., Duan, H., Chen, W. Y., Li, X. M., … Lai, W. H. (2019). Ultrabright fluorescent microsphere and its novel application for improving the sensitivity of immunochromatographic assay. Biosensors and Bioelectronics, 135, 173–180. doi: 10.1016/j.bios.2019.04.023
  • Zhang, K., Wang, G., Bao, M., Wang, L., & Xie, X. (2019). Exogenous application of ascorbic acid mitigates cadmium toxicity and uptake in Maize (Zea mays L.). Environmental Science and Pollution Research, 26(19), 19261–19271. doi: 10.1007/s11356-019-05265-0
  • Zhang, X., Wen, K., Wang, Z., Jiang, H., Beier, R. C., & Shen, J. (2016). An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M 1 in milk. Food Control, 60, 588–595. doi: 10.1016/j.foodcont.2015.08.040
  • Zhu, J., Hong, K., Shen, X., Gan, Y., Tian, F., Zhao, J., … Chen, W. (2020). A new method for evaluating the bioaccessibility of different foodborne forms of cadmium. Toxicology Letters, 319, 31–39. doi: 10.1016/j.toxlet.2019.11.002
  • Zou, S., Cui, G., Liu, L., Song, S., & Kuang, H. (2017). Development of ic-ELISA and an immunochromatographic strip assay for the detection of methylmercury. Food and Agricultural Immunology, 28(4), 699–710. doi: 10.1080/09540105.2017.1309643
  • Zuo, Q., Chen, Y., Chen, Z. P., & Yu, R. Q. (2018). Quantification of cadmium in rice by surface-enhanced Raman spectroscopy based on a ratiometric indicator and conical holed enhancing substrates. Analytical Sciences, 34(12), 1405–1410. doi: 10.2116/analsci.18P342