3,137
Views
14
CrossRef citations to date
0
Altmetric
Research Article

Anthocyanins profiling of bilberry (Vaccinium myrtillus L.) extract that elucidates antioxidant and anti-inflammatory effects

ORCID Icon, , ORCID Icon, , & ORCID Icon
Pages 713-726 | Received 28 Jun 2021, Accepted 20 Sep 2021, Published online: 01 Nov 2021

References

  • Arnold, S. (2012). Cytochrome c oxidase and its role in neurodegeneration and neuroprotection. In B. Kadenbach (Ed.), Mitochondrial oxidative phosphorylation: nuclear-encoded genes, enzyme regulation, and pathophysiology (Vol. 748, pp. 305–339). New York: Springer.
  • Bayazid, A. B., Jang, Y. A., Kim, Y. M., Kim, J. G., & Lim, B. O. (2021). Neuroprotective effects of sodium butyrate through suppressing neuroinflammation and modulating antioxidant enzymes. Neurochemical Research, 46(9), 2348–2358. https://doi.org/10.1007/s11064-021-03369-z
  • Bayazid, A. B., & Jang, Young Ah. (2021). The Role of Andrographolide on Skin Inflammations and Modulation of Skin Barrier Functions in Human Keratinocyte. Biotechnology and Bioprocess Engineering.
  • Bayazid, A. B., Kim, J. G., Park, S. H., & Lim, B. O. (2020a). Antioxidant, anti-inflammatory, and antiproliferative activity of mori cortex radicis extracts. Natural Product Communications, 15(1), 1934578X–19899765. https://doi.org/10.1177/1934578X19899765
  • Bayazid, A. B., Park, S. H., Kim, J. G., & Lim, B. O. (2020b). Green chicory leaf extract exerts anti-inflammatory effects through suppressing LPS-induced MAPK/NF-κB activation and hepatoprotective activity in vitro. Food Agricultural Immunology, 31(1), 513–532. https://doi.org/10.1080/09540105.2020.1742667
  • Bellet, M. M., Pieroni, S., Castelli, M., Piobbico, D., Fallarino, F., Romani, L., … Servillo, G. (2020). HOPS/tmub1 involvement in the NF-kB-mediated inflammatory response through the modulation of TRAF6. Cell Death&Disease, 11(10), 1–14. https://doi.org/10.1038/s41419-020-03086-5
  • Chu, W.-k., Cheung, S. C., Lau, R. A., & Benzie, I. F. (2011). Bilberry (Vaccinium myrtillus L.). Herbal Medicine, 20115386, 55–71. https://doi.org/10.1201/b10787-5
  • Debnath, T., Park, P.-J., Deb Nath, N. C., Samad, N. B., Park, H. W., & Lim, B. O. (2011). Antioxidant activity of Gardenia jasminoides Ellis fruit extracts. Food Chemistry, 128(3), 697–703. https://doi.org/10.1016/j.foodchem.2011.03.090
  • Harijith, A., Ebenezer, D. L., & Natarajan, V. (2014). Reactive oxygen species at the crossroads of inflammasome and inflammation. Frontiers in Physiology, 5, 352. https://doi.org/10.3389/fphys.2014.00352
  • Jeong, C.-H., Choi, G.-N., Kim, J.-H., Kwak, J.-H., Heo, H.-J., Shim, K.-H., … Choi, J.-S. (2009). In vitro antioxidative activities and phenolic composition of hot water extract from different parts of Cudrania tricuspidata. Preventive Nutrition Food Science, 14(4), 283–289. https://doi.org/10.3746/jfn.2009.14.4.283
  • Khoo, H. E., Azlan, A., Tang, S. T., & Lim, S. M. (2017). Anthocyanidins and anthocyanins: Colored pigments as food, pharmaceutical ingredients, and the potential health benefits. Food Nutrition Research, 61(1), 1361779. https://doi.org/10.1080/16546628.2017.1361779
  • Mijan, M. A., Kim, J. Y., Moon, S.-Y., Choi, S.-H., Nah, S.-Y., & Yang, H.-J. (2019). Gintonin enhances proliferation, late stage differentiation, and cell survival from endoplasmic reticulum stress of oligodendrocyte lineage cells. Frontiers in Pharmacology, 10, 1211. https://doi.org/10.3389/fphar.2019.01211
  • Mojica, L., Meyer, A., Berhow, M. A., & de Mejía, E. G. (2015). Bean cultivars (Phaseolus vulgaris L.) have similar high antioxidant capacity, in vitro inhibition of α-amylase and α-glucosidase while diverse phenolic composition and concentration. Food Research International, 69, 38–48. https://doi.org/10.1016/j.foodres.2014.12.007
  • Moskovitz, J., Yim, M. B., Chock, P. B., & Biophysics. (2002). Free radicals and disease. Archives of Biochemistry and Biophysics, 397(2), 354–359. https://doi.org/10.1006/abbi.2001.2692
  • Popović, D., Đukić, D., Katić, V., Jović, Z., Jović, M., Lalić, J., … Sokolović, D. (2016). Antioxidant and proapoptotic effects of anthocyanins from bilberry extract in rats exposed to hepatotoxic effects of carbon tetrachloride. Life Sciences, 157, 168–177. https://doi.org/10.1016/j.lfs.2016.06.007
  • Ramirez-Tortosa, C., Andersen, ØM, Gardner, P. T., Morrice, P. C., Wood, S. G., Duthie, S. J., … Medicine. (2001). Anthocyanin-rich extract decreases indices of lipid peroxidation and DNA damage in vitamin E-depleted rats. Free Radical Biology, 31(9), 1033–1037. https://doi.org/10.1016/S0891-5849(01)00618-9
  • Rechner, A. R., Kuhnle, G., Bremner, P., Hubbard, G. P., Moore, K. P., & Rice-Evans, C. A. (2002). The metabolic fate of dietary polyphenols in humans. Free Radical Biology Medicine, 33(2), 220–235. https://doi.org/10.1016/S0891-5849(02)00877-8
  • Reuter, S., Gupta, S. C., Chaturvedi, M. M., Aggarwal, B. B., & Medicine (2010). Oxidative stress, inflammation, and cancer: How are they linked? Free Radical Biology, 49(11), 1603–1616. https://doi.org/10.1016/j.freeradbiomed.2010.09.006
  • Seitz, H. K., & Stickel, F. (2006). Risk factors and mechanisms of hepatocarcinogenesis with special emphasis on alcohol and oxidative stress. Biological Chemistry, 387(4), 349–360. https://doi.org/10.1515/BC.2006.047
  • Stocker, R., Yamamoto, Y., McDonagh, A. F., Glazer, A. N., & Ames, B. N. (1987). Bilirubin is an antioxidant of possible physiological importance. Science, 235(4792), 1043–1046. https://doi.org/10.1126/science.3029864
  • Tarozzi, N., Bizzaro, D., Flamigni, C., & Borini, A. (2007). Clinical relevance of sperm DNA damage in assisted reproduction. Reproductive BioMedicine Online, 14(6), 746–757. https://doi.org/10.1016/S1472-6483(10)60678-5
  • Valentová, K., Ulrichová, J., Cvak, L., & Šimánek, V. (2007). Cytoprotective effect of a bilberry extract against oxidative damage of rat hepatocytes. Food Chemistry, 101(3), 912–917. https://doi.org/10.1016/j.foodchem.2006.02.038
  • Wang, J., & Mazza, G. (2002). Inhibitory effects of anthocyanins and other phenolic compounds on nitric oxide production in LPS/IFN-γ-activated RAW 264.7 macrophages. Journal of Agricultural & Food Chemistry, 50(4), 850–857. https://doi.org/10.1021/jf010976a