1,262
Views
3
CrossRef citations to date
0
Altmetric
Articles

Development of a sensitive monoclonal antibody-based immunochromatographic strip for neomycin detection in milk

, , , , , , , , , , , , , & show all
Pages 315-327 | Received 13 Mar 2022, Accepted 21 Apr 2022, Published online: 24 May 2022

References

  • Adams, E., Schepers, R., Roets, E., & Hoogmartens, J. (1996). Determination of neomycin sulfate by liquid chromatography with pulsed electrochemical detection. Journal of Chromatography A, 741(2), 233–240. https://doi.org/10.1016/0021-9673(96)00207-5
  • Beloglazova, N. V., Speranskaya, E. S., Wu, A., Wang, Z., Sanders, M., Goftman, V. V., Zhang, D., Goryacheva, I. Y., & Saeger, S. D. (2014). Novel multiplex fluorescent immunoassays based on quantum dot nanolabels for mycotoxins determination. Biosensors and Bioelectronics, 62, 59–65. https://doi.org/10.1016/j.bios.2014.06.021
  • Burkin, M. A., & Galvidis, I. A. (2011). Development and application of indirect competitive enzyme immunoassay for detection of neomycin in milk. Applied Biochemistry and Microbiology, 47(3), 321–326. Available online: https://www.webofscience.com/wos/alldb/full-record/MEDLINE:21790038. https://doi.org/10.1134/S0003683811030045
  • Chen, Y. Q., Shang, Y. H., Wu, X. P., Qi, Y. T., & Xiao, X. L. (2007). Enzyme-linked immunosorbent assay for the detection of neomycin in milk: Effect of hapten heterology on assay sensitivity. Food and Agricultural Immunology, 18(2), 117–128. https://doi.org/10.1080/09540100701579829
  • Clarot, I., Regazzeti, A., Auzeil, N., Laadani, F., Cittonet, M., Netter, P., & Nicolas, A. (2005). Analysis of neomycin sulfate and framycetin sulfate by high-performance liquid chromatography using evaporative light scattering detection. Journal of Chromatography A, 1087(1-2), 236–244. https://doi.org/10.1016/j.chroma.2005.05.054
  • Commission Regulation, EC. (2002). No. 1183/2002 of 1 July 2002. amending Annex I of Council Regulation (EEC), No. 2377/90.
  • He, J. J., Wang, Y., & Zhang, X. Y. (2016). Preparation of artificial antigen and development of IgY-based indirect competitive ELISA for the detection of kanamycin residues. Food Analytical Methods, 9(3), 744–751. https://doi.org/10.1007/s12161-015-0248-x
  • Hendrickson, O. D., Byzova, N. A., Zvereva, E. A., Zherdev, A. V., & Dzantiev, B. B. (2021). Sensitive lateral flow immunoassay of an antibiotic neomycin in foodstuffs. Journal of Food Science and Technology, 58(7), 292–301. https://doi.org/10.1007/s13197-020-04541-z
  • Jana, S., & Deb, J. K. (2006). Molecular understanding of aminoglycoside action and resistance. Applied Microbiology and Biotechnology, 70(2), 140–150. https://doi.org/10.1007/s00253-005-0279-0
  • Jin, Y., Jang, J. W., Lee, M. H., & Han, C. H. (2006). Development of ELISA and immunochromatographic assay for the detection of neomycin. Clinica Chimica Acta, 364(1-2), 260–266. https://doi.org/10.1016/j.cca.2005.07.024
  • Li, J., Duan, H., Xu, P., Huang, X. L., & Xiong, Y. H. (2016). Effect of different-sized spherical gold nanoparticles grown layer by layer on the sensitivity of an immunochromatographic assay. RSC Advances, 6(31), 26178–26185. https://doi.org/10.1039/C6RA03695C
  • Li, Z. Z., Wang, Y., Li, D. M., Chen, X. J., Li, Z. L., Gao, H. L., Cao, L., Li, S. B., & Hou, Y. Z. (2017). Development of an indirect competitive enzyme-linked immunosorbent assay for screening ethopabate residue in chicken muscle and liver. RSC Advances, 7(57), 36072–36080. https://doi.org/10.1039/C6RA20736G
  • Linares, E. M., Kubota, L. T., Michaelis, J., & Thalhammer, S. (2012). Enhancement of the detection limit for lateral flow immunoassays: Evaluation and comparison of bioconjugates. Journal of Immunological Methods, 375(1-2), 264–270. https://doi.org/10.1016/j.jim.2011.11.003
  • Liu, C., Jiang, Y. L., Xiu, L. Y., Qian, R. J., Zhao, M. X., Lou, P. J., Ke, Y. B., Li, G. M., & Jiang, W. X. (2021). Ultratrace analysis of neomycin residues in milk at femtogram levels by flow-through immunoaffinity chromatography test. Food Analytical Methods, 14(11), 2298–2307. https://doi.org/10.1007/s12161-021-02058-5
  • Luo, P. J., Zhang, J. B., Wang, H. L., Chen, X., Wu, N., Zhao, Y. F., & Jiang, W. X. (2016). Rapid and sensitive chemiluminescent enzyme immunoassay for the determination of neomycin residues in milk. Biomedical and Environmental Sciences, 29(5), 374–378. Available online: https://doi.org/10.3967/bes2016.048.
  • Manners, J. G., & Stewart, R. (1982). Presence of dihydrostreptomycin and penicillin in cows, milk following intrauterine administration. Australian Veterinary Journal, 58(5), 203–204. https://doi.org/10.1111/j.1751-0813.1982.tb00655.x
  • Mari, G. M., Li, H. F., Dong, B. L., Yang, H. J., Talpur, A., Mi, J. F., Guo, L. C., Yu, X. Z., Ke, Y. B., Han, D. G., & Wang, Z. H. (2021). Hapten synthesis, monoclonal antibody production and immunoassay development for direct detection of 4-hydroxybenzehydrazide in chicken, the metabo-lite of nifuroxazide. Food Chemistry, 355, 129598. https://doi.org/10.1016/j.foodchem.2021.129598
  • Tunc, C., Sehnaz, Y., Vildan, E. A., Hakan, B., & Selma, O. (2018). Monitoring of neomycin sulfate antibiotic in microbial fuel cells. Bioresource Technology, 268, 116–120. https://doi.org/10.1016/j.biortech.2018.07.122
  • Waksman, S. A., & Lechevalier, H. A. (1949). Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. American Journal of Obstetrics and Gynecology, 109(2830), 305–307. Available online: https://doi.org/10.1126/science.109.2830.305
  • Wang, D., Zhang, Z. W., Li, P. W., Zhang, Q., & Zhang, W. (2016). Time-resolved fluorescent immunochromatography of aflatoxin b1 in soybean sauce: A rapid and sensitive quantitative analysis. Sensors, 16(7), 1094. https://doi.org/10.3390/s16071094
  • Wang, S., Xu, B., Zhang, Y., & He, J. X. (2009). Development of enzyme-linked immunosorbent assay (ELISA) for the detection of neomycin residues in pig muscle, chicken muscle, egg, fish, milk and kidney. Meat Science, 82(1), 53–58. https://doi.org/10.1016/j.meatsci.2008.12.003
  • Yang, H. J., Dai, R., Zhang, H. Y., Li, C. L., Zhang, X. Y., Shen, J. Z., Wen, K., & Wang, Z. H. (2016). Production of monoclonal antibodies with broad specificity and development of an immunoassay for microcystins and nodularin in water. Analytical and Bioanalytical Chemistry, 408(22), 6037–6044. https://doi.org/10.1007/s00216-016-9692-8
  • Zhang, Q., He, L. Y., Rani, K. K., Wu, D. Y., Han, J. J., Chen, Y. H., & Su, W. J. (2021a). Colorimetric detection of neomycin sulfate in tilapia based on plasmonic core–shell Au@PVP nanoparticles. Food Chemistry, 356, 129612. https://doi.org/10.1016/j.foodchem.2021.129612
  • Zhang, X. Y., Ding, M. Y., Zhang, C. S., Mao, Y. X., Wang, Y. Y., Li, P. P., Jiang, H. Y., Wang, Z. H., & Yu, X. Z. (2021b). Development of a New monoclonal antibody against brevetoxins in oyster samples based on the indirect competitive enzyme-linked immunosorbent assay. Foods (basel, Switzerland), 10(10), 2398. https://doi.org/10.3390/foods10102398
  • Zhang, X. Y., Wen, K., Wang, Z. H., Jiang, H. Y., Beier, R. C., & Shen, J. Z. (2016a). An ultra-sensitive monoclonal antibody-based fluorescent microsphere immunochromatographic test strip assay for detecting aflatoxin M 1 in milk. Food Control, 60, 588–595. https://doi.org/10.1016/j.foodcont.2015.08.040
  • Zhang, X. Y., Wu, C., Wen, K., Jiang, H. Y., Shen, J. Z., Zhang, S. X., & Wang, Z. H. (2016b). Comparison of fluorescent microspheres and colloidal gold as labels in lateral flow immunochromatographic assays for the detection of T-2 toxin. Molecules, 21(1), 27. https://doi.org/10.3390/molecules21010027
  • Zhang, X. Y., Yu, X. Z., Wen, K., Li, C. L., Mari, G. M., Jiang, H. Y., Shi, W. M., Shen, J. Z., & Wang, Z. H. (2017). Multiplex lateral flow immunoassays based on amorphous carbon nanoparticles for detecting threefusariummycotoxins in maize. Journal of Agricultural and Food Chemistry, 65(36), 8063–8071. https://doi.org/10.1021/acs.jafc.7b02827
  • Zhang, X. Y., Zhao, F. F., Sun, Y. W., Mi, T. J., Wang, L. Y., Li, Q., Li, J. Y., Ma, W. T., Liu, W. J., Zuo, J. N., Chu, X. Y., Chen, B., Han, W. M., & Mao, Y. X. (2020). Development of a highly sensitive lateral flow immunoassay based on receptor-antibody-amorphous carbon nanoparticles to detect 22 β-lactams in milk. Sensors and Actuators B: Chemical, 321, 128458. https://doi.org/10.1016/j.snb.2020.128458
  • Zu, M., Jiang, J., Zhao, H., Zhang, S. L., Yan, Y., Qiu, S. W., Yuan, S. L., Han, J. W., Zhang, Y., Guo, W. W., & Yang, S. M. (2018). Rapid analysis of neomycin in cochlear perilymph of Guinea pigs using disposable SPE cartridges and high performance liquid chromatography-tandem mass spectrometry. Journal of Chromatography B, 1093-1094, 52–59. https://doi.org/10.1016/j.jchromb.2018.06.055