9,753
Views
64
CrossRef citations to date
0
Altmetric
Articles

Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review

, , &
Pages 51-65 | Received 04 Feb 2016, Accepted 07 Mar 2016, Published online: 29 Mar 2016

References

  • Rafaj P, Bertok I, Cofala J, et al. Scenarios of global mercury emissions from anthropogenic sources. Atmos. Environ. 2013;79:472–479.10.1016/j.atmosenv.2013.06.042
  • Krystek P, Favaro P, Bode P, et al. Methyl mercury in nail clippings in relation to fish consumption analysis with gas chromatography coupled to inductively coupled plasma mass spectrometry: a first orientation. Talanta. 2012;97:83–86.10.1016/j.talanta.2012.03.065
  • Zhao Y, Zheng J, Fang L, et al. Speciation analysis of mercury in natural water and fish samples by using capillary electrophoresis-inductively coupled plasma mass spectrometry. Talanta. 2012;89:280–285.10.1016/j.talanta.2011.12.029
  • Sedlackova L, Kruzikova K, Svobodova Z. Mercury speciation in fish muscles from major Czech rivers and assessment of health risks. Food Chem. 2014;150:360–365.10.1016/j.foodchem.2013.10.041
  • Sarıca DY, Türker AR. Speciation and determination of inorganic mercury and methylmercury by headspace single drop microextraction and electrothermal atomic absorption spectrometry in water and fish. Clean – Soil Air Water. 2012;40:523–530.10.1002/clen.201100535
  • Gao Y, Shi Z, Long Z, et al. Determination and speciation of mercury in environmental and biological samples by analytical atomic spectrometry. Microchem. J. 2012;103:1–14.10.1016/j.microc.2012.02.001
  • Korbas M, Macdonald TC, Pickering IJ, et al. Chemical form matters: differential accumulation of mercury following inorganic and organic mercury exposures in zebrafish larvae. ACS Chem. Biol. 2012;7:411–420.10.1021/cb200287c
  • Yin YG, Chen M, Peng JF, et al. Dithizone-functionalized solid phase extraction-displacement elution-high performance liquid chromatography–inductively coupled plasma mass spectrometry for mercury speciation in water samples. Talanta. 2010;81:1788–1792.10.1016/j.talanta.2010.03.039
  • Türker AR, Çabuk D, Yalçınkaya Ö. Preconcentration, speciation, and determination of mercury by solid phase extraction with cold vapor atomic absorption spectrometry. Anal. Lett. 2013;46:1155–1170.
  • Chen B, Wu Y, Guo X, et al. Speciation of mercury in various samples from the micro-ecosystem of East Lake by hollow fiber-liquid–liquid–liquid microextraction-HPLC-ICP-MS. J. Anal. At. Spectrom. 2015;30:875–881.
  • Li P, He M, Chen B, et al. Automated dynamic hollow fiber liquid–liquid–liquid microextraction combined with capillary electrophoresis for speciation of mercury in biological and environmental samples. J. Chromatogr. A. 2015;1415:48–56.10.1016/j.chroma.2015.08.062
  • Jia X, Han Y, Liu X, et al. Speciation of mercury in water samples by dispersive liquid–liquid microextraction combined with high performance liquid chromatography–inductively coupled plasma mass spectrometry. Spectrochim. Acta, Part B. 2011;66:88–92.10.1016/j.sab.2010.12.003
  • Liang P, Yu J, Yang E, et al. Determination of mercury in food and water samples by displacement-dispersive liquid–liquid microextraction coupled with graphite furnace atomic absorption spectrometry. Food Anal. Method. 2015;8:236–242.10.1007/s12161-014-9899-2
  • Yang F, Li J, Lu W, et al. Speciation analysis of mercury in water samples by dispersive liquid–liquid microextraction coupled to capillary electrophoresis. Electrophoresis. 2014;35:474–481.10.1002/elps.201300409
  • Leng G, Yin H, Li S, et al. Speciation analysis of mercury in sediments using vortex-assisted liquid–liquid microextraction coupled to high-performance liquid chromatography–cold vapor atomic fluorescence spectrometry. Talanta. 2012;99:631–636.10.1016/j.talanta.2012.06.051
  • Amde M, Liu J-F, Tan Z-Q, et al. Ionic liquid-based zinc oxide nanofluid for vortex assisted liquid liquid microextraction of inorganic mercury in environmental waters prior to cold vapor atomic fluorescence spectroscopic detection. Talanta. 2016;149:341–346.10.1016/j.talanta.2015.12.004
  • Martinis EM, Wuilloud RG. Cold vapor ionic liquid-assisted headspace single-drop microextraction: a novel preconcentration technique for mercury species determination in complex matrix samples. J. Anal. At. Spectrom. 2010;25:1432.10.1039/c004678g
  • Pena-Pereira F, Lavilla I, Bendicho C, et al. Speciation of mercury by ionic liquid-based single-drop microextraction combined with high-performance liquid chromatography-photodiode array detection. Talanta. 2009;78:537–541.10.1016/j.talanta.2008.12.003
  • Yuan C-G, Lin K, Chang A. Determination of trace mercury in environmental samples by cold vapor atomic fluorescence spectrometry after cloud point extraction. Microchim. Acta. 2010;171:313–319.10.1007/s00604-010-0429-7
  • Mao Y, Yin Y, Li Y, et al. Occurrence of monoethylmercury in the Florida Everglades: identification and verification. Environ. Pollut. 2010;158:3378–3384.10.1016/j.envpol.2010.07.031
  • Pietilä H, Perämäki P, Piispanen J, et al. Determination of methyl mercury in humic-rich natural water samples using N2-distillation with isotope dilution and on-line purge and trap GC-ICP-MS. Microchem. J. 2014;112:113–118.10.1016/j.microc.2013.10.002
  • Li X, Wang Y, Li B, et al. Distribution and speciation of heavy metals in surface sediments from the Yangtze estuary and coastal areas. Environ. Earth Sci. 2012;69:1537–1547.
  • Taylor VF, Carter A, Davies C, et al. Trace-level automated mercury speciation analysis. Anal. Methods. 2011;3:1143–1148.10.1039/c0ay00528b
  • Jia XY, Gong DR, Han Y, et al. Fast speciation of mercury in seawater by short-column high-performance liquid chromatography hyphenated to inductively coupled plasma spectrometry after on-line cation exchange column preconcentration. Talanta. 2012;88:724–729.10.1016/j.talanta.2011.10.026
  • Chen X, Han C, Cheng H, et al. Rapid speciation analysis of mercury in seawater and marine fish by cation exchange chromatography hyphenated with inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2013;1314:86–93.
  • Cheng H, Wu C, Shen L, et al. Online anion exchange column preconcentration and high performance liquid chromatographic separation with inductively coupled plasma mass spectrometry detection for mercury speciation analysis. Anal. Chim. Acta. 2014;828:9–16.10.1016/j.aca.2014.04.042
  • Liu Z, Zhu Z, Zheng H, et al. Plasma jet desorption atomization-atomic fluorescence spectrometry and its application to mercury speciation by coupling with thin layer chromatography. Anal. Chem. 2012;84:10170–10174.10.1021/ac3028504
  • Ai X, Wang Y, Hou X, et al. Advanced oxidation using Fe(3)O(4) magnetic nanoparticles and its application in mercury speciation analysis by high performance liquid chromatography–cold vapor generation atomic fluorescence spectrometry. Analyst. 2013;138:3494–3501.10.1039/c3an00010a
  • Braaten HFV, de Wit HA, Harman C, et al. Effects of sample preservation and storage on mercury speciation in natural stream water. Int. J. Environ. Anal. Chem. 2014;94:381–384.10.1080/03067319.2013.823489
  • Leopold K, Foulkes M, Worsfold P. Methods for the determination and speciation of mercury in natural waters – a review. Anal. Chim. Acta. 2010;663:127–138.10.1016/j.aca.2010.01.048
  • Xu X, Li YF, Zhao J, et al. Nanomaterial-based approaches for the detection and speciation of mercury. Analyst. 2015;140:7841–7853.10.1039/C5AN01519G
  • Parker JL, Bloom NS. Preservation and storage techniques for low-level aqueous mercury speciation. Sci. Total Environ. 2005;337:253–263.10.1016/j.scitotenv.2004.07.006
  • Devai RD, Delaune WHP, Jr., Gambrell RP. Changes in methylmercury concentration during storage: effect of temperature. Org. Geochem. 2001;32:755–758.10.1016/S0146-6380(01)00039-0
  • Yu L-P, Yan X-P. Factors affecting the stability of inorganic and methylmercury during sample storage. TrAC Trends Anal. Chem. 2003;22:245–253.10.1016/S0165-9936(03)00407-2
  • Braaten HF, de Wit HA, Fjeld E, et al. Environmental factors influencing mercury speciation in Subarctic and Boreal lakes. Sci. Total Environ. 2014;476–477:336–345.10.1016/j.scitotenv.2014.01.030
  • Rajabi HR, Shamsipur M, Zahedi MM, et al. On-line flow injection solid phase extraction using imprinted polymeric nanobeads for the preconcentration and determination of mercury ions. Chem. Eng. J. 2015;259:330–337.10.1016/j.cej.2014.08.025
  • Chen C, Peng M, Hou X, et al. Improved hollow fiber supported liquid–liquid–liquid membrane microextraction for speciation of inorganic and organic mercury by capillary electrophoresis. Anal. Methods. 2013;5:1185–1191.10.1039/c2ay26214b
  • Brombach C-C, Chen B, Corns WT, et al. Methylmercury in water samples at the pg/L level by online preconcentration liquid chromatography cold vapor-atomic fluorescence spectrometry. Spectrochim. Acta, Part B. 2015;105:103–108.10.1016/j.sab.2014.09.014
  • Escudero LB, Olsina RA, Wuilloud RG. Polymer-supported ionic liquid solid phase extraction for trace inorganic and organic mercury determination in water samples by flow injection-cold vapor atomic absorption spectrometry. Talanta. 2013;116:133–140.10.1016/j.talanta.2013.05.001
  • Wang W, Chen M, Chen X, et al. Thiol-rich polyhedral oligomeric silsesquioxane as a novel adsorbent for mercury adsorption and speciation. Chem. Eng. J. 2014;242:62–68.10.1016/j.cej.2013.12.063
  • Li B-H. Rapid speciation analysis of mercury by short column capillary electrophoresis on-line coupled with inductively coupled plasma mass spectrometry. Anal. Methods. 2011;3:116–121.10.1039/C0AY00480D
  • Xiang G, Li L, Jiang X, et al. Thiol-modified magnetic silica sorbent for the determination of trace mercury in environmental water samples coupled with cold vapor atomic absorption spectrometry. Anal. Lett. 2013;46:706–716.10.1080/00032719.2012.726679
  • Guzmán-Mar JL, Hinojosa-Reyes L, Serra AM, et al. Applicability of multisyringe chromatography coupled to cold-vapor atomic fluorescence spectrometry for mercury speciation analysis. Anal. Chim. Acta. 2011;708:11–18.10.1016/j.aca.2011.09.037
  • Song X, Ye M, Tang X, et al. Ionic liquids dispersive liquid–liquid microextraction and HPLC-atomic fluorescence spectrometric determination of mercury species in environmental waters. J. Sep. Sci. 2013;36:414–420.10.1002/jssc.201200571
  • Sarafraz-Yazdi A, Fatehyan E, Amiri A. Determination of mercury in real water samples using in situ derivatization followed by sol–gel–solid-phase microextraction with gas chromatography-flame ionization detection. J. Chromatogr. Sci. 2014;52:81–87.
  • Kim E, Noh S, Lee Y-G, et al. Mercury and methylmercury flux estimation and sediment distribution in an industrialized urban bay. Mar. Chem. 2014;158:59–68.
  • Leopold K, Foulkes M, Worsfold PJ. Preconcentration techniques for the determination of mercury species in natural waters. TrAC Trends Anal. Chem. 2009;28:426–435.10.1016/j.trac.2009.02.004
  • Pelcová P, Dočekalová H, Kleckerová A. Development of the diffusive gradient in thin films technique for the measurement of labile mercury species in waters. Anal. Chim. Acta. 2014;819:42–48.10.1016/j.aca.2014.02.013
  • Fernández-Gómez C, Dimock B, Hintelmann H, et al. Development of the DGT technique for Hg measurement in water: comparison of three different types of samplers in laboratory assays. Chemosphere. 2011;85:1452–1457.10.1016/j.chemosphere.2011.07.080
  • Pelcová P, Dočekalová H, Kleckerová A. Determination of mercury species by the diffusive gradient in thin film technique and liquid chromatography–atomic fluorescence spectrometry after microwave extraction. Anal. Chim. Acta. 2015;866:21–26.10.1016/j.aca.2015.01.043
  • Zhang T, Kucharzyk KH, Kim B, et al. Net methylation of mercury in estuarine sediment microcosms amended with dissolved, nanoparticulate, and microparticulate mercuric sulfides. Environ. Sci. Technol. 2014;48:9133–9141.10.1021/es500336j
  • Avramescu ML, Zhu J, Yumvihoze E, et al. Simplified sample preparation procedure for measuring isotope-enriched methylmercury by gas chromatography and inductively coupled plasma mass spectrometry. Environ. Toxicol. Chem. 2010;29:1256–1262.
  • Zhang YR, Wang RQ, Xue T, et al. Effects of soil properties and flooding on the mobility and transformation of mercury in a temperate riparian wetland. Soil Sediment Contam.: Int. J. 2015;24:191–205.
  • Terzano R, Santoro A, Spagnuolo M, et al. Solving mercury (Hg) speciation in soil samples by synchrotron X-ray microspectroscopic techniques. Environ. Pollut. 2010;158:2702–2709.10.1016/j.envpol.2010.04.016
  • Hojdová M, Rohovec J, Chrastný V, et al. The influence of sample drying procedures on mercury concentrations analyzed in soils. Bull. Environ. Contam. Toxicol. 2015;94:570–576.10.1007/s00128-015-1521-9
  • Gao Z, Ma X. Speciation analysis of mercury in water samples using dispersive liquid–liquid microextraction combined with high-performance liquid chromatography. Anal. Chim. Acta. 2011;702:50–55.10.1016/j.aca.2011.06.019
  • Spietelun A, Marcinkowski Ł, de la Guardia M, et al. Green aspects, developments and perspectives of liquid phase microextraction techniques. Talanta. 2014;119:34–45.10.1016/j.talanta.2013.10.050
  • Stanisz E, Werner J, Matusiewicz H. Mercury species determination by task specific ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction combined with cold vapour generation atomic absorption spectrometry. Microchem. J. 2013;110:28–35.10.1016/j.microc.2013.01.006
  • Andruch V, Burdel M, Kocúrová L, et al. Application of ultrasonic irradiation and vortex agitation in solvent microextraction. TrAC Trends Anal. Chem. 2013;49:1–19.10.1016/j.trac.2013.02.006
  • Leng G, Chen W, Wang Y. Speciation analysis of mercury in sediments using ionic-liquid-based vortex-assisted liquid–liquid microextraction combined with high-performance liquid chromatography and cold vapor atomic fluorescence spectrometry. J. Sep. Sci. 2015;38:2684–2691.10.1002/jssc.v38.15
  • Asensio-Ramos M, Ravelo-Pérez LM, González-Curbelo MA, et al. Liquid phase microextraction applications in food analysis. J. Chromatogr. A. 2011;1218:7415–7437.10.1016/j.chroma.2011.05.096
  • Moreno F, García-Barrera T, Gómez-Ariza JL. Simultaneous speciation and preconcentration of ultra trace concentrations of mercury and selenium species in environmental and biological samples by hollow fiber liquid phase microextraction prior to high performance liquid chromatography coupled to inductively coupled plasma mass spectrometry. J. Chromatogr. A. 2013;1300:43–50.10.1016/j.chroma.2013.02.083
  • Jeannot MA, Przyjazny A, Kokosa JM. Single drop microextraction – development, applications and future trends. J. Chromatogr. A. 2010;1217:2326–2336.10.1016/j.chroma.2009.10.089
  • Xiong X, Qi X, Liu J, et al. Comparison of modifiers for mercury speciation in water by solid phase extraction and high performance liquid chromatography–atomic fluorescence spectrometry. Anal. Lett. 2014;47:2417–2430.10.1080/00032719.2014.910667
  • Trujillo SI, Alonso EV, Pavón JMC, et al. Use of a new enrichment nanosorbent for speciation of mercury by FI-CV-ICP-MS. J. Anal. At. Spectrom. 2015;30:2429–2440.10.1039/C5JA00335K
  • Ma S, He M, Chen B, et al. Magnetic solid phase extraction coupled with inductively coupled plasma mass spectrometry for the speciation of mercury in environmental water and human hair samples. Talanta. 2016;146:93–99.10.1016/j.talanta.2015.08.036
  • Rodríguez-Reino MP, Rodríguez-Fernández R, Peña-Vázquez E, et al. Mercury speciation in seawater by liquid chromatography–inductively coupled plasma-mass spectrometry following solid phase extraction pre-concentration by using an ionic imprinted polymer based on methyl–mercury–phenobarbital interaction. J. Chromatogr. A. 2015;1391:9–17.10.1016/j.chroma.2015.02.068
  • Yordanova T, Dakova I, Balashev K, et al. Polymeric ion-imprinted nanoparticles for mercury speciation in surface waters. Microchem. J. 2014;113:42–47.10.1016/j.microc.2013.11.008
  • Gao Y, Yang W, Zheng C, et al. On-line preconcentration and in situ photochemical vapor generation in coiled reactor for speciation analysis of mercury and methylmercury by atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2011;26:126–132.10.1039/C0JA00137F
  • Chen ML, Ma HJ, Zhang SQ, et al. Mercury speciation with L-cysteine functionalized cellulose fibre as adsorbent by atomic fluorescence spectrometry. J. Anal. At. Spectrom. 2011;26:613–617.10.1039/c0ja00185f
  • Carneado S, Peró-Gascón R, Ibáñez-Palomino C, et al. Mercury(ii) and methylmercury determination in water by liquid chromatography hyphenated to cold vapour atomic fluorescence spectrometry after online short-column preconcentration. Anal. Methods. 2015;7:2699–2706.10.1039/C4AY02929A
  • Pietilä H, Perämäki P, Piispanen J, et al. Determination of low methylmercury concentrations in peat soil samples by isotope dilution GC-ICP-MS using distillation and solvent extraction methods. Chemosphere. 2015;124:47–53.10.1016/j.chemosphere.2014.11.001
  • Pirrone N, Sharif A, Monperrus M, et al, Determination of methyl mercury and inorganic mercury in natural waters at the pgL−1 level: intercomparison between PT-GC-Pyr-AFS and GC-ICP-MS using ethylation or propylation derivatization. E3S Web of Conferences. 2013;1. 09001. Available from: http://www.e3s-conferences.org/articles/e3sconf/pdf/2013/01/e3sconf_ichm13_09001.pdf
  • Jagtap R, Krikowa F, Maher W, et al. Measurement of methyl mercury (I) and mercury (II) in fish tissues and sediments by HPLC-ICPMS and HPLC-HGAAS. Talanta. 2011;85:49–55.10.1016/j.talanta.2011.03.022
  • Nevado JJ, Martin-Doimeadios RC, Krupp EM, et al. Comparison of gas chromatographic hyphenated techniques for mercury speciation analysis. J. Chromatogr. A. 2011;1218:4545–4551.10.1016/j.chroma.2011.05.036
  • Kadlecova M, Daye M, Ouddane B. Improvement in determination of methylmercury in sediments by headspace trap gas chromatography and atomic fluorescence spectrometry after organic extraction and aqueous phase ethylation. Anal. Lett. 2014;47:697–706.10.1080/00032719.2013.848364
  • Gao Y, De Craemer S, Baeyens W. A novel method for the determination of dissolved methylmercury concentrations using diffusive gradients in thin films technique. Talanta. 2014;120:470–474.10.1016/j.talanta.2013.12.023
  • Kim Y-H, Kim K-H, Yoon H-O, et al. The application of gas chromatography-time-of-flight mass spectrometry to the analysis of monomethyl mercury at sub-picogram levels. Microchem. J. 2013;110:107–112.10.1016/j.microc.2013.03.002
  • Timerbaev AR. Element speciation analysis using capillary electrophoresis: twenty years of development and applications. Chem. Rev. 2013;113:778–812.10.1021/cr300199v
  • Li P, Zhang X, Hu B. Phase transfer membrane supported liquid–liquid–liquid microextraction combined with large volume sample injection capillary electrophoresis–ultraviolet detection for the speciation of inorganic and organic mercury. J. Chromatogr. A. 2011;1218:9414–9421.10.1016/j.chroma.2011.10.071
  • Yin Y, Liu Y, Liu J, et al. Determination of methylmercury and inorganic mercury by volatile species generation-flameless/flame atomization-atomic fluorescence spectrometry without chromatographic separation. Anal. Methods. 2012;4:1122–1125.10.1039/c2ay05886c
  • Xu F, Kou L, Jia J, et al. Metal-organic frameworks of zeolitic imidazolate framework-7 and zeolitic imidazolate framework-60 for fast mercury and methylmercury speciation analysis. Anal. Chim. Acta. 2013;804:240–245.10.1016/j.aca.2013.09.058
  • Guerrini L, Rodriguez-Loureiro I, Correa-Duarte MA, et al. Chemical speciation of heavy metals by surface-enhanced Raman scattering spectroscopy: identification and quantification of inorganic- and methyl-mercury in water. Nanoscale. 2014;6:8368–8375.10.1039/c4nr01464b
  • Chen L, Li J, Chen L. Colorimetric detection of mercury species based on functionalized gold nanoparticles. ACS Appl. Mater. Interfaces. 2014;6:15897–15904.10.1021/am503531c
  • Zhang Z, Zhang B, Qian X, et al. Simultaneous quantification of Hg(2+) and MeHg(+) in aqueous media with a single fluorescent probe by multiplexing in the time domain. Anal. Chem. 2014;86:11919–11924.10.1021/ac503900w
  • Wei Q, Nagi R, Sadeghi K, et al. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. ACS Nano. 2014;8:1121–1129.10.1021/nn406571t
  • Reis AT, Coelho JP, Rodrigues SM, et al. Development and validation of a simple thermo-desorption technique for mercury speciation in soils and sediments. Talanta. 2012;99:363–368.10.1016/j.talanta.2012.05.065
  • Yin Y, Chen B, Mao Y, et al. Possible alkylation of inorganic Hg(II) by photochemical processes in the environment. Chemosphere. 2012;88:8–16.10.1016/j.chemosphere.2012.01.006
  • Lusilao-Makiese JG, Tessier E, Amouroux D, et al. Seasonal distribution and speciation of mercury in a gold mining area, north-west province. S. Afr., Toxicol. Environ. Chem. 2014;96:387–402.
  • Bendicho C, Lavilla I, Pena-Pereira F, et al. Green chemistry in analytical atomic spectrometry: a review. J. Anal. At. Spectrom. 2012;27:1831.10.1039/c2ja30214d