3,777
Views
49
CrossRef citations to date
0
Altmetric
Articles

Efficient adsorptive removal of Congo red from aqueous solution by synthesized zeolitic imidazolate framework-8

, , &
Pages 199-208 | Received 08 May 2016, Accepted 12 Aug 2016, Published online: 30 Aug 2016

References

  • Bhattacharyya R, Ray SK. Removal of Congo red and methyl violet from water using nano clay filled composite hydrogels of poly acrylic acid and polyethylene glycol. Chem. Eng. J. 2015;260:269–283.10.1016/j.cej.2014.08.030
  • Vimonses V, Jin B, Chow CWK. Insight into removal kinetic and mechanisms of anionic dye by calcined clay materials and lime. J. Hazard. Mater. 2010;177:420–427.10.1016/j.jhazmat.2009.12.049
  • Han R, Ding D, Xu Y, et al. Use of rice husk for the adsorption of Congo red from aqueous solution in column mode. Bioresour. Technol. 2008;99:2938–2946.10.1016/j.biortech.2007.06.027
  • Bejarano-Pérez NJ, Suárez-Herrera MF. Sonophotocatalytic degradation of Congo red and methyl orange in the presence of TiO2 as a catalyst. Ultrason. Sonochem. 2007;14:589–595.10.1016/j.ultsonch.2006.09.011
  • Zhu H, Jiang R, Xiao L, et al. Photocatalytic decolorization and degradation of Congo red on innovative crosslinked chitosan/nano-CdS composite catalyst under visible light irradiation. J. Hazard. Mater. 2009;169:933–940.10.1016/j.jhazmat.2009.04.037
  • Vijayaraghavan G, Shanthakumar S. Performance study on algal alginate as natural coagulant for the removal of Congo red dye. Desalin. Water Treat. 2016;57:6384–6392.
  • Bhaumik M, McCrindle R, Maity A. Efficient removal of Congo red from aqueous solutions by adsorption onto interconnected polypyrrole–polyaniline nanofibres. Chem. Eng. J. 2013;228:506–515.10.1016/j.cej.2013.05.026
  • Namasivayam C, Kavitha D. Removal of Congo red from water by adsorption onto activated carbon prepared from coir pith, an agricultural solid waste. Dyes Pigm. 2002;54:47–58.10.1016/S0143-7208(02)00025-6
  • Vimonses V, Lei S, Jin B, et al. Kinetic study and equilibrium isotherm analysis of Congo red adsorption by clay materials. Chem. Eng. J. 2009;148:354–364.10.1016/j.cej.2008.09.009
  • Zhu HY, Fu YQ, Jiang R, et al. Adsorption removal of Congo red onto magnetic cellulose/Fe3O4/activated carbon composite: equilibrium, kinetic and thermodynamic studies. Chem. Eng. J. 2011;173:494–502.10.1016/j.cej.2011.08.020
  • Moradi SE, Dadfarnia S, Haji Shabani AM, et al. Removal of Congo red from aqueous solution by its sorption onto the metal organic framework MIL-100(Fe): equilibrium, kinetic and thermodynamic studies. Desalin. Water Treat. 2014;1–13.
  • Wu L, Liu Y, Zhang L, et al. A green-chemical synthetic route to fabricate a lamellar-structured Co/Co(OH)2 nanocomposite exhibiting a high removal ability for organic dye. Dalton Trans. 2014;43:5393–5400.10.1039/c3dt53369g
  • Hu H, Liu S, Chen C, et al. Two novel zeolitic imidazolate frameworks (ZIFs) as sorbents for solid-phase extraction (SPE) of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. The Analyst. 2014;139:5818–5826.10.1039/C4AN01410C
  • Yan Q, Lin Y, Kong C, et al. Remarkable CO2/CH4 selectivity and CO2 adsorption capacity exhibited by polyamine-decorated metal-organic framework adsorbents. Chem. Commun. 2013;49:6873–6875.10.1039/c3cc43352h
  • Vermoortele F, Ameloot R, Alaerts L, et al. Tuning the catalytic performance of metal-organic frameworks in fine chemistry by active site engineering. J. Math. Chem. 2012;22:10313–10321.10.1039/c2jm16030g
  • Fan X, Wang W, Li W, et al. Highly Porous ZIF-8 nanocrystals prepared by a surfactant mediated method in aqueous solution with enhanced adsorption kinetics. ACS Appl. Mater. Interfaces. 2014;6:14994–14999.
  • Lin Y, Zhang Q, Zhao C, et al. An exceptionally stable functionalized metal-organic framework for lithium storage. Chem. Commun. 2015;51:697–699.10.1039/C4CC07149B
  • Hasan Z, Jhung SH. Removal of hazardous organics from water using metal-organic frameworks (MOFs): plausible mechanisms for selective adsorptions. J. Hazard. Mater. 2015;283:329–339.10.1016/j.jhazmat.2014.09.046
  • Li L, Li JC, Rao Z, et al. Metal organic framework [Cu3 (BTC)2 (H2O)3] for the adsorption of methylene blue from aqueous solution. Desalin. Water Treat. 2014;52:7332–7338.10.1080/19443994.2013.821955
  • Xiao L, Xiong Y, Tian S, et al. One-dimensional coordination supramolecular polymer [Cu(bipy)(SO4)]n as an adsorbent for adsorption and kinetic separation of anionic dyes. Chem. Eng. J. 2015;265:157–163.10.1016/j.cej.2014.11.134
  • Khanjani S, Morsali A. Ultrasound-promoted coating of MOF-5 on silk fiber and study of adsorptive removal and recovery of hazardous anionic dye “congo red”. Ultrason. Sonochem. 2014;21:1424–1429.10.1016/j.ultsonch.2013.12.012
  • Park KS, Ni Z, Cote AP, et al. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc. Nat. Acad. Sci. 2006;103:10186–10191.10.1073/pnas.0602439103
  • Wang B, Côté AP, Furukawa H, et al. Colossal cages in zeolitic imidazolate frameworks as selective carbon dioxide reservoirs. Nature. 2008;453:207–211.10.1038/nature06900
  • Lee YR, Jang MS, Cho HY, et al. ZIF-8: a comparison of synthesis methods. Chem. Eng. J. 2015;271:276–280.10.1016/j.cej.2015.02.094
  • Wu YN, Zhou M, Zhang B, et al. Amino acid assisted templating synthesis of hierarchical zeolitic imidazolate framework-8 for efficient arsenate removal. Nanoscale. 2014;6:1105–1112.10.1039/C3NR04390H
  • Khan NA, Jung BK, Hasan Z, et al. Adsorption and removal of phthalic acid and diethyl phthalate from water with zeolitic imidazolate and metal-organic frameworks. J. Hazard. Mater. 2014;282:194–200.
  • Li J, Wu YN, Li Z, et al. Zeolitic imidazolate framework-8 with high efficiency in trace arsenate adsorption and removal from water. J. Phys. Chem. C. 2014;118:27382–27387.10.1021/jp508381m
  • Kwon HT, Jeong HK. Highly propylene-selective supported zeolite-imidazolate framework (ZIF-8) membranes synthesized by rapid microwave-assisted seeding and secondary growth. Chem. Commun. 2013;49:3854–3856.10.1039/c3cc41039k
  • Ho YS, McKay G, Wase DAJ, et al. Study of the sorption of divalent metal ions on to peat. Adsorpt. Sci. Technol. 2000;18:639–650.10.1260/0263617001493693
  • Wang MX, Zhang QL, Yao SJ. A novel biosorbent formed of marine-derived Penicillium janthinellum mycelial pellets for removing dyes from dye-containing wastewater. Chem. Eng. J. 2015;259:837–844.10.1016/j.cej.2014.08.003
  • Qin FX, Jia SY, Liu Y, et al. Adsorptive removal of bisphenol A from aqueous solution using metal-organic frameworks. Desalin. Water Treat. 2015;54:93–102.10.1080/19443994.2014.883331
  • Yang K, Zhu L, Xing B. Sorption of phenanthrene by nanosized alumina coated with sequentially extracted humic acids. Environ. Sci. Pollut. Res. 2010;17:410–419.10.1007/s11356-009-0163-z
  • Hameed BH, Rahman AA. Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J. Hazard. Mater. 2008;160:576–581.10.1016/j.jhazmat.2008.03.028
  • Ding D, Zhao Y, Yang S, et al. Adsorption of cesium from aqueous solution using agricultural residue – walnut shell: equilibrium, kinetic and thermodynamic modeling studies. Water Res. 2013;47:2563–2571.10.1016/j.watres.2013.02.014
  • Jing HP, Wang CC, Zhang YW, et al. Photocatalytic degradation of methylene blue in ZIF-8. RSC Adv. 2014;4:54454–54462.10.1039/C4RA08820D
  • Dawood S, Sen TK. Removal of anionic dye Congo red from aqueous solution by raw pine and acid-treated pine cone powder as adsorbent: equilibrium, thermodynamic, kinetics, mechanism and process design. Water Res. 2012;46:1933–1946.10.1016/j.watres.2012.01.009
  • Jiang JQ, Yang CX, Yan XP. Zeolitic imidazolate framework-8 for fast adsorption and removal of benzotriazoles from aqueous solution. ACS App. Mater. Interfaces. 2013;5:9837–9842.10.1021/am403079n
  • Wang L, Wang A. Adsorption properties of Congo red from aqueous solution onto surfactant-modified montmorillonite. J. Hazard. Mater. 2008;160:173–180.10.1016/j.jhazmat.2008.02.104
  • Toor M, Jin B, Dai S, et al. Activating natural bentonite as a cost-effective adsorbent for removal of Congo-red in wastewater. J. Ind. Eng. Chem. 2015;21:653–661.10.1016/j.jiec.2014.03.033
  • Reddy MCS, Sivaramakrishna L, Reddy AV. The use of an agricultural waste material, Jujuba seeds for the removal of anionic dye (Congo red) from aqueous medium. J. Hazard. Mater. 2012;203–204:118–127.10.1016/j.jhazmat.2011.11.083
  • Wang S, Fan Y, Jia X. Sodium dodecyl sulfate-assisted synthesis of hierarchically porous ZIF-8 particles for removing mercaptan from gasoline Chem. Eng. J. 2014;256:14–22.
  • Chizallet C, Lazare S, Bazer-Bachi D, et al. Catalysis of transesterification by a nonfunctionalized metal-organic framework: acido-basicity at the external surface of ZIF-8 probed by FTIR and ab initio calculations. J. Am. Chem. Soc. 2010;132:12365–12377.10.1021/ja103365s
  • Rimbu GA, Stamatin I, Jackson CL, et al. The morphology control of polyaniline as conducting polymer in fuel cell technology. J. Optoelectron. Adv. Mater. 2006;8:670–674.
  • Telke AA, Joshi SM, Jadhav SU, et al. Decolorization and detoxification of Congo red and textile industry effluent by an isolated bacterium Pseudomonas sp. SU-EBT. Biodegradation. 2010;21:283–296.10.1007/s10532-009-9300-0
  • Lorenc-Grabowska E, Gryglewicz G. Adsorption characteristics of Congo red on coal-based mesoporous activated carbon. Dyes Pigm. 2007;74:34–40.10.1016/j.dyepig.2006.01.027
  • Tanaka S, Kida K, Nagaoka T, et al. Mechanochemical dry conversion of zinc oxide to zeolitic imidazolate framework. Chem. Commun. 2013;49:7884–7886.10.1039/c3cc43028f