2,260
Views
18
CrossRef citations to date
0
Altmetric
Articles

Silver nanoparticles from Prosopis glandulosa and their potential application as biocontrol of Acinetobacter calcoaceticus and Bacillus cereus

, , , , , & show all
Pages 1-5 | Received 25 Sep 2016, Accepted 21 Oct 2016, Published online: 02 Nov 2016

References

  • Reddy NJ, Nagoor V, Rani D., et al. Evaluation of antioxidant, antibacterial and cytotoxic effects of green synthesized silver nanoparticals by piper longum fruit. Mater Sci Eng C Mater Biol Appl. 2014; 34:115–12210.1016/j.msec.2013.08.039
  • Alt V, Bechert T, Streinrucke P, et al. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials. 2004;25:4383–4391.10.1016/j.biomaterials.2003.10.078
  • Sanpui P, Chattopadhyay A, Ghosh S. Induction of apoptosis in cancer cells at low silver nanoparticle concentrations using chitosan nanocarrier. ACS Appl Mater Interfaces. 2011;3:218–228.10.1021/am100840c
  • Sadhasivam S, Shanmugam P, Yun K. Biosynthesis of silver nano-particles by Streptomyces hygroscopicus and antimicrobial activity against medically important pathogenic microorganisms. Colloids Surf B. 2010;81:358–362.10.1016/j.colsurfb.2010.07.036
  • Nanda A, Saravanan M. Biosynthesis of silver nanoparticles from Staphylococcus aureus and its antimicrobial activity against MRSA and MRSE. Nanomedicine. 2009;5:452–456.
  • Jeong SH, Yeo SY, Yi SC, et al. The effect of filler particle size on the antibacterial properties of compounded polymer/ silver fibers. J Mater Sci. 2005;40:5407–5411.10.1007/s10853-005-4339-8
  • Valli JS, Vaseeharan B. Biosynthesis of silver nanoparticles by Cissus quadrangularis extracts. Mater Lett. 2012;82:171–173.10.1016/j.matlet.2012.05.040
  • Saxena A, Tripathi RM, Zafar F, et al. Green synthesis of silver nanoparticles using aqueous solution of Ficus benghalensis leaf extract and characterization of their antibacterial activity. Mater Lett. 2012;6:791–794.
  • Kumar V, Yadav SK. Plant-mediated synthesis of silver and gold nanoparticles and their applications. J Chem Technol Biotechnol. 2009;84:151–157.10.1002/jctb.v84:2
  • Pérez-García EA, Meave JA, Cevallos-Ferriz SRS. Flora and vegetation of the seasonally dry tropics in Mexico: origin and biogeographical implications. Acta Bot Mex. 2012;100:149–193.
  • Carevic FS. The role of ecophysiological studies in the genus Prosopis: implications for the conservation of drought-prone species. Idesia. 2014;32:77–81.10.4067/S0718-34292014000400010
  • Ahmed S, Saifullah M, Babu LS, et al. Green synthesis of silver nanoparticles using Azadirachta indica aqueous leaf extract. J Radiat Res Appl Sci. 2016;9:1–7.10.1016/j.jrras.2015.06.006
  • Ramalingam V, Rajaram R, Premkumar C, et al. Biosynthesis of silver nanoparticles from deep sea bacterium Pseudomonas aeruginosa JQ989348 for antimicrobial, antibioflim and cytotoxic activity. J Basic Microbiol. 2013;53:1–9.
  • Singh A, Jain D, Upadhyay MK, et al. Green synthesis of silver nanoparticles using Argemone Mexicana leaf esctract and evaluation of their antimicrobial activities. Dig J Nanomater Biostruct. 2010;5:483–489.
  • Zhou C, Qi W, Lewis EN, et al. Concomitant Raman spectroscopy and dynamic light scattering for characterization of therapeutic proteins at high concentrations. Anal Biochem. 2015;472:7–20.10.1016/j.ab.2014.11.016
  • Visahl RP, Agrawal YK. Nanosuspesion: an approach to enhance solubility of drugs. J Adv Pharm Technol Res. 2011;2:81–87.
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core-Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J. Colloid Interface Sci. 2004;275:496–502.10.1016/j.jcis.2004.03.003
  • Ibrahim HMM. Green synthesis and characterization of silver nanoparticles using banana peel extract and their antimicrobial activity against representative microorganisms. J Radiat Res Appl Sci. 2015;8:265–275.10.1016/j.jrras.2015.01.007
  • Raja K, Saravanakumar A, Vijayakumar R. Efficient synthesis of silver nanoparticles from Prosopis juliflora leaf extract and its antimicrobial activity using sewage. Spectrochim Acta, Part A. 2012;97:490–494.10.1016/j.saa.2012.06.038
  • Rai A, Singh A, Ahmad A, et al. Role of halide ions and temperature on the morphology of biologically synthesized gold nanotriangles. Langmuir. 2006;22:736–741.10.1021/la052055q
  • Tripathy A, Raichur AM, Chandrasekaran N, et al. Process variables in biomimetic synthesis of silver nanoparticles by aqueous extract of Azadirachta indica (Neem) leaves. J Nanopart Res. 2010;12:237–246.10.1007/s11051-009-9602-5
  • Dhas SP, Mukerjhee A, Chandrasekaran N. Phytosynthesis of silver nanoparticles using Ceriops tagal and its antimicrobial potential against human pathogens. Int J Pharm Pharm Sci. 2013;5:349–352.
  • Palanisamy K, Kalaiselvi PA, Gabriel M, et al. Emblica officinalis leaf extract mediated green synthesis of antibacterial silver nanoparticles against human pathogens. World J Pharm Sci. 2014;3:2019–2032.
  • Sharma G, Jasuja ND, Rajgovind P. et al. Synthesis, characterization and antimicrobial activity of Abelia grandiflora assisted AgNPs. J Microb Biochem Technol. 2014; 6: 274–278
  • Morones JR, Elechiguerra JL, Camacho A, et al. The bactericidal effect of silver nanoparticles. Nanotechnology. 2005;16:2346–2353.10.1088/0957-4484/16/10/059