2,313
Views
5
CrossRef citations to date
0
Altmetric
Articles

Characteristics of nutrient release from sediments under different flow conditions

, , , , , & show all
Pages 70-77 | Received 02 Mar 2017, Accepted 17 Apr 2017, Published online: 27 Apr 2017

References

  • Huettel M, Røy H, Precht E, et al. Hydrodynamical impact on biogeochemical processes in aquatic sediments. Hydrobiologia. 2003;494:231–236.10.1023/A:1025426601773
  • Havens KE, Fukushima T, Xie P, et al. Nutrient dynamics and the eutrophication of shallow lakes Kasumigaura (Japan), Donghu (PR China), and Okeechobee (USA). Environ Pollut. 2001;111(2):263–272.10.1016/S0269-7491(00)00074-9
  • Huang Q, Wang Z, Wang C, et al. Phosphorus release in response to pH variation in the lake sedimentswith different ratios of iron-bound P to calcium-bound P. Chem Speciation Bioavailability. 2005;17(2):55–61.10.3184/095422905782774937
  • Huang J, Xu Q, Xi B, et al. Impacts of hydrodynamic disturbance on sediment resuspension, phosphorus and phosphatase release, and cyanobacterial growth in Lake Tai. Environ Earth Sci. 2015;74(5):3945–3954.10.1007/s12665-015-4083-6
  • You B, Zhong J, Fan C, et al. Effects of hydrodynamics process on phosphorus fluxes from sediment in large, shallow Taihu Lake. J Environ Sci. 2007;19:1055–1060.10.1016/S1001-0742(07)60172-7
  • Zhang L. Phosphorus release and absorption of surficial sediments in taihu lake under simulative disturbing conditions. J Lake Sci. 2001;13(1):35–42.
  • Bin Li, Zhang K, Zhong BC, et al. An experimental study on release of pollutants from sediment under hydrodynamic conditions. J Hydrodyn. 2008;23(2):126–133 . (in Chinese).
  • Zhang L. Kinetics of pollutants release from sediments. Techniques & Equipment for Environmental Pollution Control. 2003;4(2):22–26.(in Chinese)
  • Pang Y, Han T, Li YP, et al. Simulation and model computation on dynamic release of nutrition factors of bottom mud in taihu lake. Environ Sci. 2007;28(9):1960–1964.
  • Pratihary AK, Naqvi SWA, Narvenkar G, et al. Benthic mineralization and nutrient exchange over the inner continental shelf of western India. Biogeosci Discuss. 2013;10(6):9603–9659.10.5194/bgd-10-9603-2013
  • Wang JY, Pant HK. Phosphorus sorption characteristics of the Bronx River bed sediments. Chem Speciation Bioavailability. 2010;22(3):171–181.10.3184/095422910X12827492153851
  • Sun X, Zhu G, Luo L, et al. Experimental study on phosphorus release from sediments of shallow lake in wave flume. Sci Chin. 2006;49(S1):92–101.10.1007/s11430-006-8109-5
  • Dade WB. Near-bed turbulence and hydrodynamic control of diffusional mass transfer at the sea floor. Limnol Oceanogr. 1993;38(1):52–69.10.4319/lo.1993.38.1.0052
  • Inoue T, Nakamura Y. Effects of hydrodynamic conditions on DO transfer at a rough sediment surface. J Environ Eng. 2011;137(1):28–37.10.1061/(ASCE)EE.1943-7870.0000293
  • Fries JS. Predicting interfacial diffusion coefficients for fluxes across the sediment-water interface. J Hydraulic Eng. 2007;133(3):267–272.10.1061/(ASCE)0733-9429(2007)133:3(267)
  • Thouvenot M, Billen G, Garnier J. Modeling nutrient exchange at the sediment–water interface of river systems. J Hydrol. 2007;341(1–2):55–78.10.1016/j.jhydrol.2007.05.001
  • Chen XJ, Sheng YP. Three-dimensional modeling of sediment and phosphorus dynamics in lake okeechobee, florida: spring 1989 simulation. J Environ Eng. 2005;131(3):359–374.10.1061/(ASCE)0733-9372(2005)131:3(359)
  • Wang H, Appan A, Gulliver JS. Modeling of phosphorus dynamics in aquatic sediments: I – model development. Water Res. 2003;37(16):3928–3938.10.1016/S0043-1354(03)00304-X
  • Kelderman P, Ang’Weya RO, Rozari PD, et al. Sediment characteristics and wind-induced sediment dynamics in shallow lake markermeer, the netherlands. Aquat Sci. 2012;74(2):1–13.
  • Wilson RF, Fennel K, Mattern JP. Simulating sediment–water exchange of nutrients and oxygen: a comparative assessment of models against mesocosm observations. Cont Shelf Res. 2013;63(4):69–84.10.1016/j.csr.2013.05.003
  • Brady DC, Testa JM, Toro DM, et al. Sediment flux modeling: calibration and application for coastal systems. Estuarine Coastal Shelf Sci. 2013;117(1):107–124.10.1016/j.ecss.2012.11.003
  • Hu K, Pang Y, Wang H, et al. Simulation study on water quality based on sediment release flume experiment in Lake Taihu, China. Ecol Eng. 2011;37(4):607–615.10.1016/j.ecoleng.2010.12.022
  • Li Y, Pang Y, Jun LU, et al. On the relation between the release rate of TN, TP from sediment and water velocity. J Lake Sci. 2004;16(4):318–324.
  • Dudley LM, Grismer ME, Suarez DL, et al. Hydrodynamics and chemical transport in the root zone and shallow ground water system: modeling. Groundwater Management ASCE. San Antonio, Texas, United States: Randall J. Charbeneau; 2014. p. 385–389.
  • Shi JZ. Tidal resuspension and transport processes of fine sediment within the river plume in the partially-mixed Changjiang River estuary, China: a personal perspective. Geomorphology. 2010;121(3–4):133–151.10.1016/j.geomorph.2010.04.021
  • Thomann RV. Principles of surface water quality modeling and control. New York (NY): Harper & Row; 1987.
  • Chapra SC. Surface water-quality modeling. New York (NY): McGraw-Hill; 1997. p. 56–64.
  • Yang CT. Sediment transport: theory and practice. Int J Sediment Res. 1996;2:87–88.
  • Julien PY. Erosion and sedimentation. Eos Trans Am Geophys Union. 1995;23(1):312–313.
  • Engelund FA, Hansen E. A monograph on sediment transport in alluvial sreams. Hydrotech Constr. 1967;33(7):699–703.
  • Krone RB. Flume studies of the transport of sediments in estuarial shoaling processes. Final report. Berkeley: Hydraulic Engineering Laboratory and Sanitary Engineering Research Laboratory, University of California; 1962.
  • Mehta A, McAnally W, Hayter E, et al. Cohesive sediment transport. II: application. J Hydraul Eng. 1989;115–8:1094–1112.
  • Gessler J. The beginning of bedload movement of mixtures investigated as natural armouring in channels. Technical report no. 69. The Laboratory of Hydraulic Research and Soil Mechanics, Swiss Federal Institute of Technology, Zurich (translation by W. M. Keck Laboratory of Hydraulics and Water Resources, California Institute of Technology, Pasadena, California); 1965.
  • Gessler J. The beginning of bed load movement of mixtures investigated as natural armoring in channels. Pasadena: California Institute of Technology; 1967. p. 89.
  • Gessler J. Beginning and ceasing of sediment motion. Phys Lett B. 1971;251(2):279–283.
  • Farley kJ, Thomann RV. An integrated model for the fate and bioaccumulation of PCBs in the Hudson River estuary. Pensacola (FL): Society of Environmental Toxicology and Chemistry; 1995.
  • Partheniades E. Estuarine sediment dynamics and shoaling processes. In: Herbich JB, editor. Handbook of coastal and ocean engineering, volume 3: harbours, navigation channels, estuaries, and environmental effects. Houston (TX): Gulf Publishing Company; 1992. p. 985–1071.
  • Valverde F, Costas M, Pena F, et al. Determination of total silver and silver species in coastal seawater by inductively-coupled plasma mass spectrometry after batch sorption experiments with Chelex-100 resin. Chem Speciation Bioavailability. 2008;20(20):217–226.10.3184/095422908X381306
  • Beuselinck L, Govers G, Steegen A, et al. Sediment transport by overland flow over an area of net deposition. Hydrol Processes. 1999;13(17):2769–2782.10.1002/(ISSN)1099-1085