2,058
Views
16
CrossRef citations to date
0
Altmetric
Articles

Removal of Hg2+ and methylmercury in waters by functionalized multi-walled carbon nanotubes: adsorption behavior and the impacts of some environmentally relevant factors

, &
Pages 161-169 | Received 13 Jun 2017, Accepted 07 Sep 2017, Published online: 18 Sep 2017

References

  • Tang W, Cheng J, Zhao W, et al. Mercury levels and estimated total daily intakes for children and adults from an electronic waste recycling area in Taizhou, China: key role of rice and fish consumption. J Environ Sci. 2015;34:107–115.10.1016/j.jes.2015.01.029
  • Yan H, Rustadbakken A, Yao H, et al. Total mercury in wild fish in Guizhou reservoirs, China. J Environ Sci. 2010;22(8):1129–1136.10.1016/S1001-0742(09)60228-X
  • Fleming EJ, Mack EE, Green PG, et al. Mercury methylation from unexpected sources: molybdate-inhibited freshwater sediments and an iron-reducing bacterium. Appl Environ Microbiol. 2006;72(1):457–464.10.1128/AEM.72.1.457-464.2006
  • Gilmour CC, Henry EA, Mitchell R. Sulfate stimulation of mercury methylation in freshwater sediments. Environ Sci Technol. 1992;26(11):2281–2287.10.1021/es00035a029
  • Wu H, Ding Z, Liu Y, et al. Methylmercury and sulfate-reducing bacteria in mangrove sediments from Jiulong River Estuary, China. J Environ Sci. 2011;23(1):14–21.10.1016/S1001-0742(10)60368-3
  • Amde M, Yin YG, Zhang D, et al. Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: a review. Chem Speciation Bioavail. 2016;28(1–4):51–65.
  • Mergler D, Anderson HA, Chan LHM, et al. Methylmercury exposure and health effects in humans: a worldwide concern. Ambio. 2007;36(1):3–11.
  • Wang S, Zhang L, Wang L, et al. A review of atmospheric mercury emissions, pollution and control in China. Front Environ Sci Eng. 2014;8(5):631–649.10.1007/s11783-014-0673-x
  • Stafiej A, Pyrzynska K. Adsorption of heavy metal ions with carbon nanotubes. Sep Purif Technol. 2007;58(1):49–52.10.1016/j.seppur.2007.07.008
  • Rao GP, Lu C, Su F. Sorption of divalent metal ions from aqueous solution by carbon nanotubes: a review. Sep Purif Technol. 2007;58(1):224–231.10.1016/j.seppur.2006.12.006
  • Upadhyayula VKK, Deng S, Mitchell MC, et al. Application of carbon nanotube technology for removal of contaminants in drinking water: a review. Sci Total Environ. 2009;408(1):1–13.10.1016/j.scitotenv.2009.09.027
  • Ihsanullah, Abbas A, Al-Amer AM, et al. Heavy metal removal from aqueous solution by advanced carbon nanotubes: critical review of adsorption applications. Sep Purif Technol. 2016;157:141–161.10.1016/j.seppur.2015.11.039
  • Li YH, Ding J, Luan Z, et al. Competitive adsorption of Pb2+, Cu2+ and Cd2+ ions from aqueous solutions by multiwalled carbon nanotubes. Carbon. 2003;41(14):2787–2792.10.1016/S0008-6223(03)00392-0
  • Li YH, Wang S, Luan Z, et al. Adsorption of cadmium(II) from aqueous solution by surface oxidized carbon nanotubes. Carbon. 2003;41(5):1057–1062.10.1016/S0008-6223(02)00440-2
  • Li YH, Wang S, Wei J, et al. Lead adsorption on carbon nanotubes. Chem Phys Lett. 2002;357(3–4):263–266.10.1016/S0009-2614(02)00502-X
  • Lu C, Chiu H, Liu C. Removal of zinc(II) from aqueous solution by purified carbon nanotubes: kinetics and equilibrium studies. Ind Eng Chem Res. 2006;45(8):2850–2855.10.1021/ie051206h
  • Shadbad MJ, Mohebbi A, Soltani A. Mercury(II) removal from aqueous solutions by adsorption on multi-walled carbon nanotubes. Korean J Chem Eng. 2011;28(4):1029–1034.10.1007/s11814-010-0463-5
  • Vuković GD, Marinković AD, Škapin SD, et al. Removal of lead from water by amino modified multi-walled carbon nanotubes. Chem Eng J. 2011;173(3):855–865.10.1016/j.cej.2011.08.036
  • Jiang L, Li S, Yu H, et al. Amino and thiol modified magnetic multi-walled carbon nanotubes for the simultaneous removal of lead, zinc, and phenol from aqueous solutions. Appl Surf Sci. 2016;369:398–413.10.1016/j.apsusc.2016.02.067
  • Chen PH, Hsu CF, Tsai DDW, et al. Adsorption of mercury from water by modified multi-walled carbon nanotubes: adsorption behaviour and interference resistance by coexisting anions. Environ Technol. 2014;35(15):1935–1944.10.1080/09593330.2014.886627
  • Yaghmaeian K, Khosravi Mashizi R, Nasseri S, et al. Removal of inorganic mercury from aquatic environments by multi-walled carbon nanotubes. J Environ Health Sci Eng. 2015;13(1):1–9.
  • Lim JK, Yun WS, Yoon Mh, et al. Selective thiolation of single-walled carbon nanotubes. Synth Met. 2003;139(2):521–527.10.1016/S0379-6779(03)00337-0
  • Hu J, Shi J, Li S, et al. Efficient method to functionalize carbon nanotubes with thiol groups and fabricate gold nanocomposites. Chem Phys Lett. 2005;401(4–6):352–356.10.1016/j.cplett.2004.11.075
  • Kim YT, Mitani T. Surface thiolation of carbon nanotubes as supports: a promising route for the high dispersion of Pt nanoparticles for electrocatalysts. J Catal. 2006;238(2):394–401.10.1016/j.jcat.2005.12.020
  • Feyte S, Tessier A, Gobeil C, et al. In situ adsorption of mercury, methylmercury and other elements by iron oxyhydroxides and organic matter in lake sediments. Appl Geochem. 2010;25(7):984–995.10.1016/j.apgeochem.2010.04.005
  • Hyung H, Kim JH. Natural organic matter (NOM) adsorption to multi-walled carbon nanotubes: effect of NOM characteristics and water quality parameters. Environ Sci Technol. 2008;42(12):4416–4421.10.1021/es702916h
  • Hyung H, Fortner JD, Hughes JB, et al. Natural organic matter stabilizes carbon nanotubes in the aqueous phase. Environ Sci Technol. 2007;41(1):179–184.10.1021/es061817g
  • Bandaru NM, Reta N, Dalal H, et al. Enhanced adsorption of mercury ions on thiol derivatized single wall carbon nanotubes. J Hazard Mater. 2013;261:534–541.10.1016/j.jhazmat.2013.07.076
  • Tawabini B, Al-Khaldi S, Atieh M, et al. Removal of mercury from water by multi-walled carbon nanotubes. Water Sci Technol. 2010;61(3):591–598.10.2166/wst.2010.897
  • Sheela T, Nayaka YA, Viswanatha R, et al. Kinetics and thermodynamics studies on the adsorption of Zn(II), Cd(II) and Hg(II) from aqueous solution using zinc oxide nanoparticles. Powder Technol. 2012;217:163–170.10.1016/j.powtec.2011.10.023
  • Wang ZH, Yin YG, He B, et al. L-cysteine-induced degradation of organic mercury as a novel interface in the HPLC-CV-AFS hyphenated system for speciation of mercury. J Anal At Spectr. 2010;25(6):810–814.10.1039/b924291k
  • Zhao XH, Jiao FP, Yu JG, et al. Removal of Cu(II) from aqueous solutions by tartaric acid modified multi-walled carbon nanotubes. Colloid Surf A-Physicochem Eng. 2015;476:35–41.10.1016/j.colsurfa.2015.03.016
  • Gupta A, Vidyarthi SR, Sankararamakrishnan N. Enhanced sorption of mercury from compact fluorescent bulbs and contaminated water streams using functionalized multiwalled carbon nanotubes. J Hazard Mater. 2014;274:132–144.10.1016/j.jhazmat.2014.03.020
  • Hadavifar M, Bahramifar N, Younesi H, et al. Adsorption of mercury ions from synthetic and real wastewater aqueous solution by functionalized multi-walled carbon nanotube with both amino and thiolated groups. Chem Eng J. 2014;237:217–228.10.1016/j.cej.2013.10.014
  • Xu D, Tan X, Chen C, et al. Removal of Pb(II) from aqueous solution by oxidized multiwalled carbon nanotubes. J Hazard Mater. 2008;154(1–3):407–416.10.1016/j.jhazmat.2007.10.059
  • Zabihi M, Ahmadpour A, Asl AH. Removal of mercury from water by carbonaceous sorbents derived from walnut shell. J Hazard Mater. 2009;167(1–3):230–236.10.1016/j.jhazmat.2008.12.108
  • Moghaddam HK, Pakizeh M. Experimental study on mercury ions removal from aqueous solution by MnO2/CNTs nanocomposite adsorbent. J Ind Eng Chem. 2015;21:221–229.10.1016/j.jiec.2014.02.028
  • Scheibe B, Borowiak-Palen E, Kalenczuk RJ. Oxidation and reduction of multiwalled carbon nanotubes – preparation and characterization. Mater Charact. 2010;61(2):185–191.10.1016/j.matchar.2009.11.008
  • Vuković G, Marinković A, Obradović M, et al. Synthesis, characterization and cytotoxicity of surface amino-functionalized water-dispersible multi-walled carbon nanotubes. Appl Surf Sci. 2009;255(18):8067–8075.10.1016/j.apsusc.2009.05.016
  • Ren X, Chen C, Nagatsu M, et al. Carbon nanotubes as adsorbents in environmental pollution management: A review. Chem Eng J. 2011;170(2–3):395–410.10.1016/j.cej.2010.08.045
  • Ma Y, La P, Lei W, et al. Adsorption of Hg(II) from aqueous solution using amino-functionalized graphite nanosheets decorated with Fe3O4 nanoparticles. Desalin Water Treat. 2016;57(11):5004–5012.10.1080/19443994.2014.998292
  • Pillay K, Cukrowska EM, Coville NJ. Multi-walled carbon nanotubes as adsorbents for the removal of parts per billion levels of hexavalent chromium from aqueous solution. J Hazard Mater. 2009;166(2–3):1067–1075.10.1016/j.jhazmat.2008.12.011
  • Hintelmann H, Welbourn PM, Evans RD. Measurement of complexation of methylmercury(II) compounds by freshwater humic substances using equilibrium dialysis. Environ Sci Technol. 1997;31(2):489–495.10.1021/es960318k
  • Kushwaha S, Sreedhar B, Padmaja P. Sorption of phenyl mercury, methyl mercury, and inorganic mercury onto chitosan and barbital immobilized chitosan: spectroscopic, potentiometric, kinetic, equilibrium, and selective desorption studies. J Chem Eng Data. 2010;55(11):4691–4698.10.1021/je100317t
  • Kushwaha S. Sudhakar PP. Adsorption of mercury(II), methyl mercury(II) and phenyl mercury(II) on chitosan cross-linked with a barbital derivative. 2011;86(2):1055–1062.
  • Jeong HY, Klaue B, Blum JD, et al. Sorption of mercuric ion by synthetic nanocrystalline mackinawite (FeS). Environ Sci Technol. 2007;41(22):7699–7705.10.1021/es070289l
  • Lu C, Su F. Adsorption of natural organic matter by carbon nanotubes. Sep Purif Technol. 2007;58(1):113–121.10.1016/j.seppur.2007.07.036
  • de Diego A, Tseng CM, Dimov N, et al. Adsorption of aqueous inorganic mercury and methylmercury on suspended kaolin: influence of sodium chloride, fulvic acid and particle content. Appl Organomet Chem. 2001;15(6):490–498.10.1002/(ISSN)1099-0739