1,437
Views
13
CrossRef citations to date
0
Altmetric
Articles

Pyrogenic temperature affects the particle size of biochar-supported nanoscaled zero valent iron (nZVI) and its silver removal capacity

, , , , , , , , , , & show all
Pages 179-185 | Received 09 Jul 2017, Accepted 17 Oct 2017, Published online: 31 Oct 2017

References

  • Ponder SM, Darab JG, Mallouk TE. Remediation of Cr(VI) and Pb(II) aqueous solutions using supported, nanoscale zero-valent iron. Environ Sci Technol. 2000;34:2564–2569.10.1021/es9911420
  • Carlos L, Einschlag FSGa, González MnC, Mártire DO, Applications of magnetite nanoparticles for heavy metal removal from wastewater. In: Einschlag FSGa, Carlos L., editors. Waste water – treatment technologies and recent analytical developments. Rijeka: InTech; 2013. Ch. 03.
  • Auffan M, Rose J, Proux O, et al. Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir. 2008;24:3215–3222.10.1021/la702998x
  • Tuček J, Sofer Z, Bouša D, et al. Air-stable superparamagnetic metal nanoparticles entrapped in graphene oxide matrix. Nat Commun. 2016;7:12879.
  • Hashem M, Sharaf S, Abd El-Hady MM, et al. Synthesis and characterization of novel carboxymethylcellulose hydrogels and carboxymethylcellulolse-hydrogel-ZnO-nanocomposites. Carbohydr Polym. 2013;95:421–427.10.1016/j.carbpol.2013.03.013
  • Cushing BL, Kolesnichenko VL, O’Connor CJ. Recent advances in the liquid-phase syntheses of inorganic nanoparticles. Chem Rev. 2004;104:3893–3946.10.1021/cr030027b
  • Qin L, Shing C, Sawyer S, et al. Enhanced ultraviolet sensitivity of zinc oxide nanoparticle photoconductors by surface passivation. Opt. Mater. 2011;33:359–362.10.1016/j.optmat.2010.09.020
  • Jabeen H, Chandra V, Jung S, et al. Enhanced Cr(vi) removal using iron nanoparticle decorated graphene. Nanoscale. 2011;3:3583–3585.10.1039/c1nr10549c
  • Lv X, Xu J, Jiang G, et al. Removal of chromium(VI) from wastewater by nanoscale zero-valent iron particles supported on multiwalled carbon nanotubes. Chemosphere. 2011;85:1204–1209.10.1016/j.chemosphere.2011.09.005
  • Kim SA, Kamala-Kannan S, Lee KJ, et al. Removal of Pb(II) from aqueous solution by a zeolite–nanoscale zero-valent iron composite. Chem Eng J. 2013;217:54–60.10.1016/j.cej.2012.11.097
  • Bhowmick S, Chakraborty S, Mondal P, et al. Montmorillonite-supported nanoscale zero-valent iron for removal of arsenic from aqueous solution: Kinetics and mechanism. Chem Eng J. 2014;243:14–23.10.1016/j.cej.2013.12.049
  • Wang S, Gao B, Li Y, et al. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: Batch and continuous flow tests. J Hazard Mater. 2016;322:172–181.
  • Wang S, Gao B, Li Y, et al. Manganese oxide-modified biochars: preparation, characterization, and sorption of arsenate and lead. Bioresour Technol. 2015;181:13–17.10.1016/j.biortech.2015.01.044
  • Yan J, Han L, Gao W, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour Technol. 2014;175:269–274.
  • Wang S, Zhou Y, Gao B, et al. The sorptive and reductive capacities of biochar supported nanoscaled zero-valent iron (nZVI) in relation to its crystallite size. Chemosphere. 2017;186:495–500.10.1016/j.chemosphere.2017.08.014
  • Baltrėnas P, Baltrėnaitė E, Spudulis E. Biochar from pine and birch morphology and pore structure change by treatment in biofilter. Water Air Soil Pollut. 2015;226:1–14.
  • Yakout SM, Daifullah AEHM, El-Reefy SA. Pore structure characterization of chemically modified biochar derived from rice straw. Environ Eng Manage J. 2015;14:473–480.
  • Keiluweit M, Nico PS, Johnson MG, et al. Dynamic molecular structure of plant biomass-derived black carbon (biochar). Environ Sci Technol. 2010;44:1247–1253.10.1021/es9031419
  • Wang S, Gao B, Zimmerman AR, et al. Physicochemical and sorptive properties of biochars derived from woody and herbaceous biomass. Chemosphere. 2015;134:257.
  • Yu S, Liu J. Introduction. In: Liu J, Jiang G, editors. Silver nanoparticles in the environment. Berlin, Heidelberg: Springer Berlin Heidelberg; 2015. p. 1–8.
  • Yu SJ, Yin YG, Liu JF. Silver nanoparticles in the environment. Environ Sci Processes Impacts. 2013;15:78.10.1039/C2EM30595 J
  • Yu S, Yin Y, Chao J, et al. Highly dynamic PVP-coated silver nanoparticles in aquatic environments: chemical and morphology change induced by oxidation of Ag 0 and reduction of Ag +. Environ Sci Technol. 2014;48:403–411.10.1021/es404334a
  • Liu JF, Chao JB, Liu R, et al. Cloud point extraction as an advantageous preconcentration approach for analysis of trace silver nanoparticles in environmental waters. Anal Chem. 2009;81:6496–6502.10.1021/ac900918e
  • Jyoti K, Baunthiyal M, Singh A. Characterization of silver nanoparticles synthesized using Urtica dioica Linn. leaves and their synergistic effects with antibiotics. J Radiat Res Appl Sci 2016; 9:217–227.10.1016/j.jrras.2015.10.002
  • Yao Y, Gao B, Wu F, et al. Engineered biochar from biofuel residue: characterization and its silver removal potential. ACS Appl Mater Interfaces. 2015;7:10634–10640.10.1021/acsami.5b03131
  • Zhou Y, Gao B, Zimmerman AR, et al. Biochar-supported zerovalent iron reclaims silver from aqueous solution to form antimicrobial nanocomposite. Chemosphere. 2014;117:801–805.10.1016/j.chemosphere.2014.10.057
  • Yao Y, Gao B, Inyang M, et al. Removal of phosphate from aqueous solution by biochar derived from anaerobically digested sugar beet tailings. J Hazard Mater. 2011;190:501.10.1016/j.jhazmat.2011.03.083
  • Yan J, Han L, Gao W, et al. Biochar supported nanoscale zerovalent iron composite used as persulfate activator for removing trichloroethylene. Bioresour Technol. 2015;175:269–274.10.1016/j.biortech.2014.10.103
  • Wang S, Gao B, Li Y, et al. Adsorptive removal of arsenate from aqueous solutions by biochar supported zero-valent iron nanocomposite: batch and continuous flow tests. J Hazard Mater. 2017;322:172–181.10.1016/j.jhazmat.2016.01.052
  • Yean S, Cong L, Yavuz CT, et al. Effect of magnetite particle size on adsorption and desorption of arsenite and arsenate. J Mater Res. 2005;20:3255–3264.10.1557/jmr.2005.0403
  • Auffan M, Rose J, Proux O, et al. Enhanced adsorption of arsenic onto maghemites nanoparticles: As(III) as a probe of the surface structure and heterogeneity. Langmuir. 2008;24:3215–3222.10.1021/la702998x
  • Kappler A, Wuestner ML, Ruecker A, et al. Biochar as an electron shuttle between bacteria and Fe(III) minerals. Environ Sci Technol Lett 2014; 1:339-344.10.1021/ez5002209
  • Dong X, Ma LQ, Gress J, et al. Enhanced Cr(VI) reduction and As(III) oxidation in ice phase: Important role of dissolved organic matter from biochar. J Hazard Mater. 2014;267:62–70.
  • He F, Zhao D. Manipulating the size and dispersibility of zerovalent iron nanoparticles by use of carboxymethyl cellulose stabilizers. Environ Sci Technol. 2007;41:6216–6221.